Botany Department

Lesson plan

Session: 2025-26 (Odd Semester)

Name of Teacher- Dr. Ritu Hooda Class-B.Sc.3rd Year Subject- Plant Physiology

Weeks	Syllabus
Week1	Plant-water relations: Importance of water to plant life; Different physical and
	Chemical properties of water
Week2	Imbibition, diffusion and osmosis; absorption and transport of water; transpiration;
	physiology of stomata
Week3	Mineral nutrition: Essential macro and micro elements and their role;
Week4	Mineral uptake; deficiency symptoms.
Week5	Transport of organic substances: Mechanism of phloem transport; source-sink
	relationship; factors affecting translocation
Week6	Photosynthesis: significance; historical aspects; photosynthetic pigments
Week7	Action spectra and enhancement effects; concept of two photosystems
Week8	Z-scheme; photo- phosphorylation; Calvin cycle; C4 pathway; CAM plants; photorespiration
Week9	Growth and development : Definitions; phases of growth and development
Week 10	Seed dormancy; plant movements; the concept of photoperiodism;
Week 11	Physiology of flowering; florigen concept
Week 12	Physiology of senescence; fruit ripening;
Week13	Plant hormones- auxins, gibberellins, cytokinins, history of their discovery mechanism of action
Week 14	Abscissic acid and ethylene, history of their discovery, mechanism of action
Week 15	Photo-morphogenesis Concept, Role of diffent photoreceptors in photomophogenesis
Week 16	Phytochromes and their discovery, physiological role and mechanism of action.

Name of Teacher- Dr. Reena Class–M.Sc. 1stsem Subject- Plant Tissue Culture and Resource Utilization

Weeks	Syllabus
Week1	Plant Tissue Culture: Introduction, History, Scope and basic concepts;
Week2	Laboratory organization, Types of media and its preparation; Sterilization techniques;
Week3	Concept of cellular differentiation and totipotency; Types of culture; callus/suspension culture; Induction and maintenance of callus and suspension cultures
Week4	Fundamental aspects of Morphogenesis and Haploid production: Study of differentiation through Organogenesis and Embryogenesis
Week5	Somatic embryogenesis and its utility, Zygotic vs. Somatic embryogenesis, Micropropagation
Week6	Encapsulation of somatic embryo & shoot tip for artificial seed production and its applications
Week7	Haploid production: Definition, Androgenesis, Gynogenesis, Culture techniques, and induction factors, Biotechnological utilization of haploids
Week8	Somatic hybridization and variations: Protoplast isolation, fusion, culture, hybrid selection
Week9	hybrid selection, and regeneration possibilities with special reference to crop plants
Week 10	Applications and limitations of protoplast research, Selection mechanism for hybrids and cybrids
Week 11	Regeneration possibilities with special reference to crop plants, Somaclonal&gametoclonal variations and isolations of useful mutants.
Week 12	Cryopreservation, Storage, and Importance: Cryopreservation and germplasm storage.
Week13	Plant secondary metabolites; sources and production of secondary metabolites/natural products through tissue culture, their selections and elicitation;
Week 14	Production of secondary metabolites through tissue culture and their biochemical pathway
Week 15	Applications of plant tissue culture in Forestry, Ornamental plants, disease-free plants, and agriculture.
Week 16	Revision

Name of Teacher- Dr. Reena Class–MSc 2ndYear Subject- Biofertilizer Production Technology

Weeks	Syllabus
Week1	Introduction, History and concept of Bio fertilizers, General account, scope and importance of Biofertilizers,
Week2	Classification of Bio fertilizers. Nitrogen fixation, Mycorrhizal symbiosis, Associative effect of microorganisms.
Week3	Selection and cultivation of beneficial microorganisms, substrate preparation, and fermentation techniques.
Week4	Structure and characteristic features: N2 Fixer - Rhizobium, Azospirillum, Azotobacter, Acetobactor and Frankia
Week5	Phosphorus solubilizes: Pseudomonas, Aspergillus, Penicillium
Week6	Potassium mobilizers: Bacillus, Enterobactor, Fecturia
Week7	Cynobacterialbiofertilizers- Anabaena, Nostoc, Hapalosiphon
Week8	Fungal biofertilizers- AM mycorrhiza and Ectomycorhiza.
Week9	Production technology: Strain selection, sterilization, growth and fermentation, equipment Isolation and purification of: N2 Fixers, Phosphorus and Potassium solubilizes
Week 10	Production technology: Strain selection, sterilization, growth and fermentation, equipment Isolation and purification of: Cyanobacteria, AM fungi
Week 11	Multiplication and mechanism: Mass multiplication of Biofertilizers, Mechanism of biofertilization (Nitrogen fixation, Phosphorus and Potassium solubilization).
Week 12	Preparation of carrier-based biofertilizers.
Week13	Application technology for seeds, seedlings, tubers, sets etc.
Week 14	Biofertilizers-storage, shelf life, quality control and marketing.
Week 15	Factors influencing the efficacy of bio fertilizers. Preparation and use of farmyard manure, compost, green manures, vermicompost, biofertilizers, Advantages of biofertilizers over chemical fertilizers,
Week 16	Economic feasibility and cost-benefit analysis of using biofertilizers.

Name of Teacher- Dr. Pooja Class–B.Sc. 1stYear Section-A,B (SEC) Subject- Biofertilizers and Biopesticides

Weeks	Syllabus
Week1	History of gardening; Importance and scope of floriculture and landscape gardening.
Week2	Nursery Management and Routine Garden Operations: Sexual and vegetative

	methods of propagation
Week3	Soil sterilization; Seed sowing; Pricking; Planting and transplanting; Shading; Stopping or pinching
Week4	Defoliation; Wintering; Mulching; Topiary; Role of plant growth regulators
Week5	Ornamental Plants: Flowering annuals (Petunia, Chrysanthemum); perennials (Rose, China Rose)
Week6	Divine vines (Money plant, Monstera); Shade and ornamental trees
Week7	Ornamental bulbous and foliage plants; Cacti and succulents; Palms and Cycads
Week8	Ferns and Selaginellas; Cultivation of plants in pots; Indoor gardening; Bonsai
Week9	Principles of Garden Design and landscaping ideas
Week 10	Features of a garden (Garden wall, Fencing, Steps, Hedge, Edging, Lawn, Flower
	beds, Shrubbery, Borders, Water garden
Week 11	Features of a garden (Garden wall, Fencing, Steps, Hedge, Edging, Lawn, Flower
	beds, Shrubbery, Borders, Water garden
Week 12	Features of a garden (Garden wall, Fencing, Steps, Hedge, Edging, Lawn, Flower
	beds, Shrubbery, Borders, Water garden.
Week13	Commercial Floriculture: Factors affecting flower production
Week 14	Production and packaging of cut flowers; Flower arrangements; Methods to prolong
	vase life
Week 15	Cultivation of Important cut flowers (Carnation, Aster, Chrysanthemum, Dahlia,
	Gerbera, Gladiolous, Marigold, Rose, Lilium, Orchids)
Week 16	Cultivation of Important cut flowers (Carnation, Aster, Chrysanthemum, Dahlia,
	Gerbera, Gladiolous, Marigold, Rose, Lilium, Orchids)

Name of Teacher- Dr. Pooja Class–B.Sc. 2ndYear Section-A,B (SEC) Subject- Plant Propagation & Nursery Techniques

Weeks	Syllabus
Week1	Nursery: Objectives and scope; infrastructure for d e v e l o p m e n t o f nursery;
Week2	Propagation structures: Mist chambers, humidifiers, greenhouses, glasshouses, cold frames, hotbeds, poly-houses
Week3	Propagation structures:nursery tools and implements; planning and seasonal activities.
Week4	Seed: Structure and types;;
Week5	Seed dormancy: causes and methods of breaking dormancy;
Week6	Seed storage: Seed banks, factors affecting seedviability.

Week7	Preparation of Soil: Land preparation, manuring, watering, sowing/raising of seeds and seedlings; transplantation of seedling
Week8	Preparation of Soil:seedlings; transplantation of seedling
Week9	Potting media: media for propagation and growing nursery plants
Week 10	Potting media:soil, sand, peat,sphagnum moss, vermiculite, perlite.
Week 11	Vermicompost production-preparation, use of vermicompost in the nursery
Week 12	Common diseases and their management: Anthracnose, blights, die back, leaf spots, powdery mildew; Insect/pest/disease control in the nursery
Week13	Propagation: Need and potentialities for plant multiplication,
Week 14	vegetative propagation:Vcutting, layering, grafting and budding and propagation through specialized organs; rhizome,corm, runners and suckers.
Week 15	Use of growth regulators in vegetative propagation. Factorsinfluencing rooting of cuttings and layering, graft incompatibility.
Week 16	Maintenance of mothertrees, collection of scion wood sticks, scion-stock relationship and their influences., Lilium, Orchids)

Name of Teacher- Dr Surender Singh Class–B.Sc.2nd Year, Section-A and B Subject- Plant Taxonomy

Weeks	Syllabus
Week1	Taxonomy and Systematics, Fundamental components of taxonomy (identification, classificationdescription, nomenclature and phylogeny
Week2	Role of chemotaxonomy, cytotaxonomy and taximetrics in relation to taxonomy, Botanical nomenclature, principles and rules, principle of priority,
Week3	Type concept, taxonomic ranks, Keys to identification of plant.
Week4	Type concept, taxonomic ranks, Salient features of the systems of classification of angiosperms proposed by Bentham & Hooker
Week5	systems of classification of angiosperms proposed by Engler& Prantl, Floral Terms and Types of Inflorescences.
Week6	Diagnostic features and economic importance of the following families: Ranunculaceae, Brassicaceae
Week7	Diagnostic features and economic importance of the following families: Malvaceae, Euphorbiaceae, Rutaceae
Week8	Diagnostic features and economic importance of the following families: Fabaceae and Cucurbitaceae
Week9	Diversity of Flowering Plants: Diagnostic features and economic importance of

	the following families: Rosaceae, Apocyanaceae,
Week 10	Diversity of Flowering Plants: Diagnostic features and economic importance of
	the following families: Apiaceae, Asclepiadaceae,
Week 11	Diversity of Flowering Plants: Diagnostic features and economic importance of
	the following families: Solanaceae, Asteraceae,
Week 12	Diversity of Flowering Plants: Diagnostic features and economic importance of
	the following families: Liliaceae and Poaceae
Week13	Biodiversity hotspots: Global and Indian perspectives. Diversity of Flowering
	Plants:
Week 14	Diffent methods of plants Identification-Herberium, keys, literature Survey,
	internet
Week 15	BSI, NBPGR, NBRI. Indian contribution in plant taxonomy
Week 16	Revison and Asignment

Name of Teacher- Dr Surender Singh Class–B.Sc.2nd Year (3rd Sem) Minor Subject- Basics of Plant Genetics

Weeks	Syllabus
Week1	Mendelian genetics and its extension: Mendelism: History; Principles of inheritance; Chromosome theory of inheritance;
Week2	Autosomes and sex chromosomes; pedigree analysis; Incomplete dominance and codominance; Multiple alleles, Lethal alleles,
Week3	Epistasis, Pleiotropy, Recessive and Dominant traits
Week4	Penetrance and Expressivity, Numericals; Polygenic inheritance.
Week5	Extrachromosomal Inheritance: Chloroplast mutation: Variegation in Four-o'-clock plant
Week6	Mitochondrial m u t a t i o n s in yeast; Maternal effects-shell coiling in snail; Infective heredity- Kappa particles in Paramecium.
Week7	Linkage, crossing over and chromosome mapping: Linkage and crossing over- Cytological basis of crossing over;
Week8	Recombination frequency, Numerical based on gene mapping; Sex Linkage.
Week9	Chromosomal aberrations: Structural and Numerical - deletions, duplications, translocations, Position effect, inversions, aneuploidy, polyploidy.
Week 10	Sex chromosomes and Sex determination in Plants. Gene mutations: Types of mutations; Molecular basis of Mutations; Mutagens – physical and chemical (Base analogs, deaminating, alkylating and intercalating agents);
Week 11	Detection of mutations: ClB method. Role of Transposons in mutation.
Week 12	Fine structure of gene: Classical vs molecular concepts of gene; Cis-Trans complementation test for functional allelism;
Week13	Population and E v o l u t i o n a r y Genetics: Allele frequencies, Genotype frequencies,
Week 14	Hardy- Weinberg Law, role of natural selection, mutation, genetic drift.

Week 15	Genetic variation and Speciation.
Week 16	Revison and Asignment

Name: Dr. Pawan Sindhu Class:B.Sc.(M) 5th Sem. Paper- Ecology

Week1	Introduction to Ecology: Definition; scope and importance; levels of organization
	SUNDAY
Week2	Environment: Introduction; environmental factors- climatic (water, humidity, wind, light, temperature)
	SUNDAY
Week3	edaphic (soil profile, physico-chemical properties), topographic and biotic factors (species interaction).
	SUNDAY
Week4	Adaptations of plants to water stress and salinity (morphological and anatomical features of hydrophytes, xerophytes and halophytes).
	SUNDAY
Week	Population ecology: Basic concept; characteristics; biotic potential, growth curves; ecotypes and ecads.
	SUNDAY
Week6	Community ecology: Concepts; characteristics (qualitative and quantitative analytical and synthetic); methods of analysis; ecological succession.
	SUNDAY
Week 7	Ecosystem: Structure (components) and functions (trophic levels, food chains, food webs, ecological pyramids and energy flow)
	SUNDAY
Week 8	Biogeochemical cycles: Carbon, nitrogen, phosphorus and hydrological cycle.
	SUNDAY
Week 9	Phyto-geography: Phyto- geographical regions of India; vegetation types of India (forests).
	SUNDAY
Week10	Environmental pollution: Sources, types and control of air and water pollution.
Week11	Global change: Greenhouse effect and greenhouse gases; impacts of global warming; carbon trading; Ozone layer depletion; Biomagnification

Week12	Revision, Assignment, Test	
Week13	Revision, Assignment, Test	

Name of Teacher- Dr Seema Class–M.Sc Botany Semester Subject- Cell and Molecular biology

Weeks	Syllabus
Week1	Cell wall structure and function
Week2	Cell membrane structure and models.
Week3	modifications of cell membranes and ion gated channels;
Week4	cell orgenelles and their structure
Week5	Ribosomes and it's structure, endoplamic reticulum, golgi complex
Week6	Cell division and cycle
Week7	Regulation of cell cycle and control mechanism
Week8	DNA replication and it's mechanism
Week 9	transcription in prokarotes and eukaryotes
Week 10	G protein receptor
Week 11	Post transcriptional modification
Week 12	Translation mechanism
Week 13	RNA editing,RNA transport
Week 14	Regulation of gene expression at transcription and translation level

Name of Teacher- Monika Class–M.Sc. 1st sem Subject -Plant Anatomy and Diversity of Gymnosperms Plant

Weeks	Syllabus

Week1	Plant tissue system, tissue types and functions. Meristems, their classification, functions, organization of root and shoot apices.
Week2	.Structure of xylem and phloem. Anatomy of dicot and monocot stem, root, leaves and wood.
Week3	Transition from root to stem. Primary and secondary growth, anomalous structure and abnormal secondary growth in stems.
Week4	Application of anatomy in systematic, archaeology and climate change studies
Week5	,Introduction to gymnosperms, general characters, life cycle, diversity and origin and classification of gymnosperms.
Week6	. Evolution of gymnosperms. Distribution of gymnosperms in India. Economic and ecological importance of gymnosperms.
Week7	Paleobotany: fossils, types of rocks, types of fossils and fossilization. Techniques for the study of fossils.
Week8	Notable paleobotanists of India. General account of the few fossil gymnosperm families (Lyginopteridaceae, Medullosaceae, Glossopteridaceae and Caytoniaceae) and orders (Cycadeoidales, Pentoxylales and Cordaitales).
Week9	Comparative account of the morphology, anatomy and reproduction in the following orders: Cycadales,
Week 10	Comparative account of the morphology, anatomy and reproduction in the following orders: Ginkgoales
Week 11	Comparative account of the morphology, anatomy and reproduction in the following orders: Coniferales
Week 12	Comparative account of the morphology, anatomy and reproduction in the following orders: Ephedrales
Week13	. Comparative account of the morphology, anatomy and reproduction in the following orders: Welwitschiales
Week 14	Comparative account of the morphology, anatomy and reproduction in the following orders: Gnetales

Name of Teacher- Monika Class–M.Sc 3rd sem Subject- Plant Physiology

Weeks	Syllabus
Week1	Water: Structure, properties and movement, osmosensors. Water absorption
	and conduction. Loss of water from plants, stomatal physiology.
Week2	Beneficial nutrient elements, their functions and deficiency symptoms. Toxic
	effects of minerals. Antagonistic and synergistic relationship amongst ions.

Week3	Nutrient uptake by roots. Root microbe interactions for nutrient uptake.
	Comparison of xylem and phloem transport, molecular mechanism of phloem
	loading and unloading, passive or active solute transport.
Week4	Signal transduction: Overview, receptors and G-proteins, phospholipid
	signaling, role of cyclic nucleotides
Week5	s, Ca+2 - calmodulin cascade. Regulation of signaling pathways. Diversity in
	protein kinases and phosphatases, specific signaling mechanisms-two
	component system in plants.
Week6	Physiology of flowering: History, discovery, properties and molecular
	structure of phytochromes and cryptochromes. Photoperiodism,
	photoinduction and endogenous rhythms.
Week7	Promoters and inhibitors of plant growth. Structure, bioassay, transport,
	storage, physiological role and mechanism of action of auxins
Week8	Promoters and inhibitors of plant growth. Structure, bioassay, transport,
	storage, physiological role and mechanism of action gibberellins
Week9	Promoters and inhibitors of plant growth. Structure, bioassay, transport,
	storage, physiological role and mechanism of action cytokinins
Week 10	Peptide hormones in plants. Structure and function of ABA, ethylene, ascorbic
	acid,
Week 11	brassinosteoids, polyamines (putrescine, spermidine, spermine and cadavarin),
	jasmonic acid and salicylic acid.
Week 12	Stress physiology: Type of stresses. Plant responses and mechanism of
	tolerance of biotic and abiotic stress.
Week13	Water, temperature, salt, heavy metal and oxidative stress.
Week 14	Effect of air pollutants SO2 and O3 and elevated CO2 on plants.
Week 14	Hypersensitive reaction and systemic acquired resistance.
Week 15	, , , , , , , , , , , , , , , , , , ,
week 15	Role of phytoalexins and phenyl propanoid pathway in plants
Week 16	Secondary plant metabolites: role of terpenes, phenols and nitrogenous
	compounds, allelopathy.

Name of Teacher- Dr. Anil Dhaka Class- M.Sc. Botany 2nd Year Subject- Plant Breeding and Cytogenetics

WEEKS	SYLLABUS
WEEK 1	Plant breeding, principles of plant breeding, important methods of breeding for vegetatively propagated crops
WEEK 2	Important methods of breeding for self and cross pollinated.
WEEK 3	Non- conventional methods of plant breeding, evolution of major crops (wheat)

WEEK 4	Evolution of major crops (maize, mustard). Origin, occurrence, production, meiosis and breeding behaviour of haploids
WEEK 5	Origin, occurrence, production, meiosis and breeding behaviour of aneuploids
WEEK 6	Origin, occurrence, production, meiosis and breeding behaviour of euploids
WEEK 7	Origin, occurrence, production, meiosis and breeding behaviour of allopolyploids
WEEK 8	Induction and characterization of trisomics and monosomics
WEEK 9	Molecular cytogenetics: C-value paradox; cot curve and its significance. Multigene families and their evolution
WEEK 10	Allele gene transfer through chromosome manipulation: transfer of whole genome, examples from wheat, <i>Arachis & Brasssica</i>
WEEK 11	Transfer of individual chromosomes and chromosome segments
WEEK 12	Methods for detecting alien chromatin: production, characterization and utility of alien addition and substitution lines
WEEK 13	Genetic basis of inbreeding and heterosis, exploitation of hybrid vigour
WEEK 14	Immuno-techniques: in-situ hybridisation
WEEK 15	Concept of techniques: FISH, GISH. 1st sessional and assignment
WEEK 16	Computer- assisted chromosome analysis. 2 nd sessional assignment

Name of Teacher- Dr. Anil Dhaka Class- M.Sc. Botany 2nd Year Subject- Plant Pathology

WEEKS	SYLLABUS
WEEK 1	Importance, definitions and concepts of plant diseases, history and growth of plant pathology
WEEK 2	Pathogenesis: penetration and entry of plant pathogens, growth, reproduction and survival. Dispersal of important plant pathogens, role of environment and host
WEEK 3	Host- parasite interactions, recognition concept and infection
WEEK 4	Diseases development Role of enzymes, toxins, growth regulators
WEEK 5	Defense strategies- oxidative burst: phenolics, phytoalexins,PR proteins,
WEEK 6	Altered plant metabolism as affected by plant pathogens. Diseases escapes, diseases tolerance, diseases resistance, types of resistance
WEEK 7	Host defence system, morphological and anatomical resistance

WEEK 8	Gene for gene concept, protein for protein and immunization basis and management of resistance genes. Genetics of resistance; Ri genes; mechanism
WEEK 9	Molecular basis of resistance; marker assisted selection. Genetic engineering for diseases resistance
WEEK 10	Plant-microbe interactions; symbionts and mycorrhiza, pathogens and pests
WEEK 11	Signalling pathways in plant defence response, salicylic acid and jasmonic acid in plant pathogen and plant herbivore interaction, necrosis,
WEEK 12	Host-parasite plant interactions
WEEK 13	Nature, classification and management of plant diseases, diseases of important crops caused by bacteria, nematodes, and viruses
WEEK 14	Plant fungal diseases, causal organisms, symptoms management of downy mildews of grapes, Karnal bunt of wheat, Management of smut of bajra, late and
WEEK 15	Yellow vein mosaic of bhindi, tikka diseases of groundnut. 1st sessional and
WEEK 16	Bacterial blight of paddy, black rust of wheat. 2 nd sessional and assignments

Name: Dr.RituNandal Class- M.Sc.Botany Final Subject-PlantReproduction Course Code-25BOT203DS03

WEEKS	SYLLABUS
Week <u>1</u>	Malegametophyte, structure of anther, microsporogenesis, role of tapetum.
Week2	Pollendevelopment, Malesterility, spermdimorphism,
Week3	pollengermination,pollentubegrowthandguidance,pollen storage, pollen allergy.
Week4	Female gametophyte, Ovule development,
	megasporogenesis.Organizationofembryosac
Week5	Structureandfunctionsofembryosaccells.
	Pollination:floralcharacteristics,mechanismsandvectors
Week6	Pollen-pistilinteractionandfertilization,structureofthe pistil, pollen stigma interactions
Week7	Self-incompatibility-SSIandGSI,Doublefertilization,in- vitro Fertilization
Week8	Seeddevelopment,endospermdevelopmentduringearly maturation and desiccation stages
Week9	Embryogenesis-ultrastructureandnuclearctyology

Week10	Storageproteinsofendospermsandembryo
Week11	Polyembryony,apomixesembryoculture
Week12	Plantgrowth:Dynamicsoffruitgrowth,biochemistryand molecular biology of fruit maturation
Week13	Dormancy:importanceandtypesofdormancy,seed dormancy, methods of overcoming seed dormancy
Week14	Sessional1 st andAssignments
Week15	Revisions
Week16	Sessional2 nd

Name : Dr. RituNandal

Class- M.Sc. Botany

Final

Subject- Plant
Ecology
Course Code-25BOT203DS02

WEEKS	SYLLABUS
WEEK1	Environment:physicalenvironment,bioticenvironment
WEEK2	Bioticandabioticinteractions, climate patterns of the world
WEEK3	Soilpatternsoftheworld, Habitatecology: conceptofhabitatandniche, niche width and overlap, fundamental and realized niche
WEEK4	Resourcepartitioning, character displacement and major habitatty pesof the subcontinent
WEEK5	Populationecology, characteristics of population, population growth curves
WEEK6	Populationregulation:liferegulationstrategies,agestructured populations.
WEEK7	Species interactions: type of interactions, interspecific competition, herbivory, carnivory, pollination, symbiosis
WEEK8	Mechanismoflitterfalldecompositionandelimaticfactors associated with decomposition.
WEEK9	Communityecology:natureofcommunities:communitystructureand attributes: analysis communities analytical and synthetic characters
WEEK10	Ecologicalsuccession:types:mechanisms:changesinvolvedinsuccession
WEEK11	Conceptofclimax:modelsofsuccession,ecological adaptations
WEEK12	Ecosystemecology,structureandfunction,energyflowandbiogeochemical cycles

WEEK13	Primaryproductionandmethodsofmeasurements,globalpatternand controlling factors, ecosystem restoration
WEEK14	1 st sessionalandassignments
WEEK15	Biomesdistribution, climaticandedaphic, floral and faunal characteristics of major terrestrial biome
WEEK16	2 nd sessionalandrevision

Name of Teacher- Dr.Naveeta Class-B.Sc.Lifescience 1st Sem. Subject- Diversity of Microbes

WEEKS	SYLLABUS
Week1	Viruses: Discovery, physiochemical and biological characteristics; classification (Baltimore)
Week2	Generalstructure with special reference to viroids and prions; replication (general account), DNA virus (T-phage), lytic and lysogenic cycle; RNA virus (TMV).
Week3	Bacteria: Discovery, general characteristics; Types-archaebacteria, eubacteria, wall-less forms (mycoplasma and spheroplasts); Cell structure; Nutritional types;
Week4	Reproduction-vegetative, asexual andrecombination (conjugation, transformation and transduction). Economic importance of bacteria with reference to their role in agriculture and industry (fermentation and medicine).
Week5	Cyanobacteria: General characters; thallus organization; cell structure; heterocyst and akinete development; reproduction; Life-cycle of Nostoc. Economic Importance of Cyanobacteria.
Week6	Algae: General characteristics; Algae in diversified habitats (terrestrial, freshwater, marine); thallus organization; cell ultrastructure; reproduction (vegetative, asexual and sexual); Algal classification criteria- pigments, reserve food and flagella; Classification upto classes (Smith, 1955); algal blooms and red tides; algal biofertilizers.
Week7	Morphology and life-cycle of Volvox, Oedogonium (Chlorophyceae),
Week8	Morphology and life-cycle ofVaucheria (Xanthophyceae)
Week9	Ectocarpus(Phaeophyceae) and Polysiphonia (Rhodophyceae) Economic importance of algae
Week10	Fungi: General characteristics; organization of thallus; nutrition and reproduction; Classification upto classes (Ainsworth, 1966); Morphology and life-cycles of Phytophthora (Mastigomycotina), Mucor
Week11	(Zygomycotina), Penicillium (Ascomycotina), Puccinia, Agaricus (Basidiomycotina), Colletotrichum

	(Deuteromycotina); Economic importance of fungi
Week12	Lichens: Classification, morphology, internal structure, reproduction and Economic importance
Week13	Mycorrhiza: Ectomycorrhiza and endomycorrhiza and their significance
Week14	Assignments Revision
Week15	Class test Revision
Week16	Revision

Name of Teacher- Surender Kumar Class–M.Sc. 1st sem Subject- Mushroom Culture Technology

Weeks	Syllabus
Week1	Mushrooms Introduction: History and Scope of Mushroom Cultivation, Taxonomical Position, Vegetative Characteristics,
Week2	Differentiation of edible and poisonous mushrooms. Common Edible mushrooms:.
Week3	Button mushroom (Agaricus bisporus), Milky mushroom (Calocybe indica)
Week4	Oyster mushroom (Pleurotus sajorcaju) and Paddy straw mushroom (Volvariella volvacea)
Week5	Natural Habitats- Humicolous, Lignicolous, and Coprophilous. Natural growth aspects and climatic requirements for each type of edible mushroom,
Week6	Principles of mushroom cultivation, Structure and construction of mushroom house.
Week7	Identification of appropriate mushrooms for commercial cultivation, nutritional and antinutritional properties
Week8	medicinal values, therapeutic aspects, and antitumor effect of mushroom
Week9	Methods used for commercial cultivation include mushroom substrate selection, substrate soaking, pasteurization, etc.
Week 10	Role and method of compost preparation, Sterilization procedures.
Week 11	Preparation of value-added products, preparation of spawn substrate, process of spawn culture
Week 12	selection of correct spawn, culture maintenance, mother spawn production, and storage of spawn.
Week13	Composting technology, mushroom bed preparation. Spawning, spawn running, harvesting.
Week 14	Cultivation of oyster and paddy straw mushroom. Problems in cultivation - diseases, pests and nematodes, weed molds, and their management strategies.

Week 15	Market opportunities; market liabilities; exploring local and national markets
Week 16	; foreign trade policy; logbooks/related documents for audit

Lesson plan

Session: 2025-26 (Odd Semester)

Name of Teacher- Surender Kumar Class–M.Sc. 1stsem Subject- Cryptogamic botany

Weeks	Syllabus
Week1	Phycology: Algae in diversified habitats (terrestrial, freshwater, marine);
Week2	thallus organization; cell ultrastructure
Week3	Classification of algae; criteria for classification
Week4	reproduction (vegetative, asexual, and sexual). pigments, reserve food and flagella.
Week5	Salient features of Protochlorophyta, Chlorophyta, Bacillariophyta,
Week6	Charophyta, Xanthophyta,
Week7	Phaeophyta and Rhodophyta.
Week8	Algal blooms; algal biofertilizers; Economic importance of algae as food, feed, medicine, and industry.
Week9	Bryophyta: Morphology, structure, reproduction and life history; distribution
Week	economic and ecological importance. Classification of bryophyte
10	
Week 11	account of Marchantiales, Jungermaniales, Anthoceratales
Week	Sphagnales, Funariales and Polytrichales.
12	
Week13	Pteridophyta: General characteristics, morphology, anatomy, reproduction and
	classification of Pteridophytes.
Week	Evolution of stele and stelar system; hetrospory and origin of seed habit; general
14	account of fossil pteridophyta;
Week	introduction to Psilopsida, Lycopsida,
15	
Week	Sphenopsida and Pteropsida.
16	