Lesson Plan (2023-2024, 1st Jan to 30th April)

Name of A	ssistant Professor Dr. Deepak Sehrawat	
Class and	Semester B.Sc. (Maths Hons) 6 th Semester	
Subject	Mathematics	
Paper	Elementary Topology	
	January	
Week -1	Definition and examples of topological spaces; Neighbourhoods,	
	Interior point and interior of a set;	
Week –2	Closed set as a complement of an open set; Adherent point and	
	limit point of a set	
Week –3	Closure of a set, Derived set, Properties of Closure operator,	
	Boundary of a set, Dense subsets, Interior, Exterior and boundary	
	operators.	
Week –4	Relative (Induced) topology, Alternative methods of defining a	
	topology in terms of neighbourhood system and Kuratowski closure	
	operator.	
Week –5	Base and sub-base for a topology, Neighbourhood system of a point	
	and its properties, Base for Neighbourhood system.	
	February	
Week –6	Continuous functions, Open and closed functions,	
XV 1 7	Homeomorphism.	
Week- /	their properties. Continuity and connected subsets and	
W/10	their properties. Continuity and connectedness.	
week –8	Components and related results; Path connected and locally	
Waalz 0	connected spaces.	
WEEK -9	intersection property	
	Intersection property.	
Week -10	WIAFCII	
Week -11	Closedness of compact subset and a continuous man from a	
	compact space into a Hausdorff and its consequence	
Week –12	Sequentially and countably compact sets Local compactness and	
	one point compatification. First countable second countable and	
	separable spaces.	
Week –13	Holi Vacations.	
	April	
Week -14	Hereditary and topological property. Countability of a collection of	
	disjoint open sets in separable and second countable spaces.	
Week -15	Lindelof theorem, T0 and T1 spaces.	

Week -16	T2 (Hausdorff) separation axioms, their characterization.
Week –17	Revision, Problem Discussion, Class Test
Week –18	Assignment and Test

Lesson Plan (2023-2024	, 1 st Jan to 30 th April)
------------------------	--

Name of Assistant Professor	Dr. Deepak Sehrawat
Class and Semester	M.Sc. (Math) 2 nd Semester
Subject	Mathematics
Paper	PDE

January			
Week -1	Method of separation of variables to solve Boundary Value		
	Problems (B.V.P.) associated with one dimensional heat equation.		
Week –2	Steady state temperature in a rectangular plate, Circular disc, Semi-		
	infinite plate. The heat equation in semi-infinite and infinite		
	regions.		
Week –3	Solution of three dimensional Laplace equations, Heat Equations,		
	Wave Equations in cartesian, cylindrical and spherical coordinates.		
Week –4	Method of separation of variables to solve B.V.P. associated with		
	motion of a vibrating string.		
Week –5	Solution of wave equation for semi-infinite and infinite strings.		
	February		
Week –6	Partial differential equations: Examples of PDE classification.		
Week-7	Transport equation – Initial value problem. Non-homogeneous		
	equations. Laplace equation – Fundamental solution.		
Week –8	Mean value formula. Class test.		
Week –9	Properties of harmonic functions, Green function.		
	March		
Week –10	Heat Equation – Fundamental solution, Mean value formula.		
Week –11	Properties of solutions, Energy methods.		
Week –12	Wave Equation – Solution by spherical means, Non-homogeneous		
	equations, Energy methods.		
Week –13	Holi Vacations.		
April			
Week –14	Non-linear first order PDE – Complete integrals.		
Week –15	Envelopes, Characteristics, Hamilton Jacobi equations		
Week –16	Calculus of variations, Hamilton ODE, Legendre transform, Hopf-Lax		
	formula, Weak solutions, Uniqueness.		
Week –17	Revision, Problem Discussion, Class Test		
Week –18	Assignment and Test		

Lesson Plan (2023-2024, 1st Jan to 30th April)

Name of Assistant Professor	Dr. Deepak Sehrawat
Class and Semester	B.Sc. (NM) 6 th Semester (Sec-B & C)
Subject	Mathematics
Paper	Linear Algebra

January		
Week -1	Vector Spaces, subspaces, sum and direct sum of subspaces.	
Week –2	Linear span, Linearly dependent and independent subset of a vector	
	space, Finitely generated vector spaces.	
Week –3	Existence theorem for basis of a finitely generated vector space,	
	Finite dimensional vector spaces.	
Week –4	Invariance of the number of elements of basis sets and Dimensions	
	Quotient space and its dimension. Class test.	
Week –5	Homomorphism and isomorphism of vector spaces, Linear	
	transformations and linear forms on vector spaces.	
	February	
Week –6	Vector space of all the linear transformations Dual Spaces, Bidual	
	spaces. Annihilator of subspaces of finite dimensional vector	
	spaces.	
Week-7	Null space, Range space of a linear transformation.	
Week –8	Rank and Nullity theorem. Class test.	
Week –9	Compact spaces and subsets, Compactness in terms of finite	
	intersection property.	
March		
Week –10	Algebra of Linear Transformation, Minimal Polynomial of a Linear	
	transformation.	
Week –11	Singular and non-singular Linear transformation, Matrix of linear	
	transformation.	
Week –12	2 Change of basis, Eigen Values and Eigen vectors of Linear	
	transformation.	
Week –13	Holi Vacations.	
April		
Week –14	Inner Product spaces, Cauchy-Schwarz Inequality	
Week –15	Orthogonal compliments, Orthogonal sets and basis, Bessel	
	inequality for finite dimensional vector space.	
Week –16	Gram-Schimidt, orthogonalization process, Adjoint of linear	
	transformation.	
Week –17	Properties of Linear transformation and Unitary linear	
	transformation.	
Week –18	Assignment, Revision, and Test	

Name of Assistant Professor		Anil Kumar
Class and Semester		B.Sc Maths Hons 2nd semester
Subject		Mathematics
Paper		Discrete Math-II
Week - 1	Some Prerequisite.	
Week-2	Lattices and their properties. Lattice as algebraic system.	
Week-3	Bounded, Complement and distributive lattices.	
Week-4	Boolean algebra, definition and examples, properties, duality.	
Week - 5	Distributive and complmented Calculus.	
Week-6	Design and implementation of digital networks.	
Week-7	Switching circuits, Karnaugh map. Class Test.	
Week-8	Graph, definition, exemplary types of graphs, paths and circuits.	

Week - 9	Eulearian and Hermitian circuits. Matrix of graph. Class Test.
Week – 10	Seven bridges machine, shortest path traveling salesman problems.
	Planar graph.
Week – 11	Problem solving and Class Test.
Week-12	Directed Graphs, Trees, Class Test.
Week - 13	Isomorphism of Trees, Representation of Algebraic
	Expressions by Binary Trees.
Week-14	Spanning Tree of a Graph, Shortest Path Problem, Minimal spanning
	Trees, Cut Sets,
Week-15	Tree Searching.
Week – 16	Revision and Class test

Name of tl	he Assistant Professor	Anil Kumar
Class and	l Semester	B.Sc. 4 th Semester, B.A.
Subject		Mathematics
Paper		Programming in C and Numerical Methods
Week-1	Some Prerequisite.	
Week-2	Programmer's model of a	a computer, Algorithms, Flow charts.
Week-3	Data types, Operators and	d expressions.
Week-4	Input / outputs functions. Class Test.	
Week-5	Decisions control stru	cture: Decision statements, Logical and
	conditional statements. C	lass Test.
Week-6	Implementation of Loops	3.
Week-7	Switch Statement & Case control structures. Functions.	
Week-8	Pre-processors and Array	vs. Class Test.
Week-9	Strings: Character Data	Type, Standard String handling Functions,
	Arithmetic Operations or	n Characters
	·	

Week-	Structures: Definition, using Structures, use of Structures in Arrays and
10	Arrays in Structures.
Week- 11	Pointers: Pointers Data type, Pointers and Arrays, Pointer & Functions.
Week-	Solution of Algebraic and Transcendental equations: Bisection
12	method, Regula-Falsi method, Secant method, Newton-Raphson's
	method.
Week-	Newton's iterative method for finding pth root of a number, Order of
13	convergence of above methods. Class Test.
Week-	Simultaneous linear algebraic equations: Gauss-elimination method,
14	Gauss-Jordan method, Class Test.
Week-	Triangularization method (LU decomposition method). Crout's
15	method, Cholesky Decomposition method.
Week-	Iterative method, Jacobi's method, Gauss-Seidal's method, Relaxation
16	method.
Week-	Revision and Class Test.
17	

Lesson Plan (2023-2024, 1st Jan to 30th April)

Name of Assistant Professor		Sunil Kumar
Class and Semester		B.Sc. (NM),Math(H)B.A 6 th Semester (Sec-A)
Subject		Mathematics
Paper		Linear Algebra
		January
Week –1	Vector Spaces, subspaces, sum and direct sum of subspaces.	
Week –2	Linear span, Linearly dependent and independent subset of a vector	
	space, Finitely generated vector spaces.	
Week –3	Existence theorem for basis of a finitely generated vector space,	
	Finite dimensional vector spaces.	
Week –4	Invariance of the number of elements of basis sets and Dimensions	
	Quotient space and its dimension. Class test.	
Week –5	Homomorphism a	nd isomorphism of vector spaces, Linear
	transformations an	d linear forms on vector spaces.
February		
Week –6	Vector space of all the linear transformations Dual Spaces, Bidual	
	spaces. Annihilator of subspaces of finite dimensional vector	
	spaces.	
Week-7	Null space, Range space of a linear transformation.	
Week –8	Rank and Nullity theorem. Class test.	

Week –9	Compact spaces and subsets, Compactness in terms of finite		
	intersection property.		
	March		
Week –10	Algebra of Linear Transformation, Minimal Polynomial of a Linear		
	transformation.		
Week -11	Singular and non-singular Linear transformation, Matrix of linear		
	transformation.		
Week –12	Change of basis, Eigen Values and Eigen vectors of Linear		
	transformation.		
Week –13	Holi Vacations.		
April			
Week –14	Inner Product spaces, Cauchy-Schwarz Inequality		
Week –15	Orthogonal compliments, Orthogonal sets and basis, Bessel		
	inequality for finite dimensional vector space.		
Week –16	Gram-Schimidt, orthogonalization process, Adjoint of linear		
	transformation.		
Week -17	Properties of Linear transformation and Unitary linear		
	transformation.		
Week -18	Assignment, Revision, and Test		

Name of		Sunil kumar
Ass istant/Associate		
Professor		
Class and S	Semester	B.Sc. Non-medical sec-A
Subject		Mathematics
Paper		ODE
		January
Week – 3	Definition of diffe	rential equation, order and degree of differential
	equation, formation	on of differential equation. Questions based on
	order and degree of	of differential equation, formation of differential
	equation. Que bas	ed on formation of differential equation.
	Geometrical mean	ing of a differential equation. Solution of an
	exact differential equation. Solution of an exact differential	
	equation	
Week-4	Definition of integ	grating factor, Finding integrating factor by
	inspection. Rule1,	2,3,4 & 5 for finding integrating factor and
	question based on it.	
Week - 5	Week - 5 Doubts on previous topics.	
February		

XX 7.1.1	
Week - I	Introduction of equation of first order but not of first degree.
	Working rule and que for the equation solvable for p. Working rule
	and que for equation solvable for y. Working rule and que for
	equation solvable for x. Solution of the equation of the type
	$y=x\Phi(p)+f(p)$. Solution of the equation reducible to Clairaut's
	form. Singular solution, p and c-discriminant.
Week – 2	Orthogonal trajectory in cartesian and polar coordinates
Week – 3	Definition of linear differential equation with constant coeff., D
	operator, definition of auxiliary equation, complete solution for
	differential equation with constant coeff. Inverse operator,
	complementary function, particular integral, few theorems &
	question based on above topic
Week – 4	Evaluate $1/f(D) x^m$, $1/f(D) (xV)$ and gue based on it. Method to
	solve homogeneous linear equation. Explanation of the method of
	solution of linear differential equation reducible to homogeneous
	linear form Question based on linear differential equation
	reducible to homogeneous linear form
	March
Week-1	Introduction to linear differential equation of second order, method
	to find P.L. of $d^2y/dx^2 + Pdy/dx + Oy=0$. Oue action based on P.L. of
	$\frac{d^2v}{dx^2} + \frac{Pdv}{dx} + Ov = 0.$
Week – 2	Solution of a linear differential equation of second order by
	removing the first derivative and changing the dependent variable.
	Solution of a linear differential equation of second order by
	changing the independent variable.
Week – 3	Solution of a linear differential equation of second order by the
	method of variation of parameters. Solution of a linear differential
	equation of second order by the method of undetermined
	coefficient
Week-4	Doubts and Class Test.
	April
Week - 1	
	Introduction to ordinary simultanious differential equation.
	Solution of simultaneous differential equations involving operators
	x (d/dx) or t (d/dt) etc. Solution of Simultaneous equation of the
	form $dx/P = dy/Q = dz/R$.
Week – 2	Concept of Second integral found with the help of first.
	Introduction to total differential equation and condition for
	exactness. Method to solve total differential equation. Solution
	when one variable is constant out of three variable in
	Pdx+Qdy+Rdz=0

Week – 3	Method of solving homogeneous equation. Method of auxiliary equation.	
Week-4	Assignment, Test, Doubts Session	

	Мау
<u>Week 1,2</u>	Revision of some typical topics and doubts clearance . Tests and presentation.

Name of the Assistant/Associate Professor: Dr Rekha

Class: M.Sc. -4 th sem

Subject: MATHEMATICS

Paper: Viscous Fluid Dynamics Paper Code: 21MAT24C3

Session: 2023-24

JANUARY

Week 1

Vorticity in two dimensions, Circular and rectilinear vortices, Complex potential of Circular and line vortex

Week 2

Vortex doublet, Images, Motion due to vortices

Week 3

Centroid of Vorticies, Example based on vortex pair

Week 4

Single infinite row of vorticies, Double infinite row of vorticies Karman vortex street

Week 5:

Wave motion in a Gas. Speed of sound in a gas.

FEBRUARY
Week 1
Equation of motion of a Gas. Subsonic, sonic and supersonic flows,
Isentropic gas flow
Week 2
Flow through a nozzle, Stress components in a real fluid. Relation
between Cartesian components of stress
Week 3
Translational motion of fluid element, Rates of strain.
Transformation of rates of strains. Relation between stresses and
rates of strain
Week 4
The co-efficient of viscosity and laminar flow. Newtonian and non-
Newtonian fluids.
MARCH
Week 1
Navier-Stoke equations of motion. Equations of motion in cylindrical
and spherical polar coordinates.
Week 2
Diffusion of vorticity. Energy dissipation due to viscosity.
Week 3
Plane Poiseuille and Couette flows between two parallel plates.
Theory of lubrication. Hagen Poiseuille flow.
Week 4

Steady flow between co-axial circular cylinders and concentric

rotating cylinders. Flow through tubes of uniform elliptic and equilateral triangular cross-section.

APRIL
Week 1 Unsteady flow over a flat plate. Steady flow past a fixed sphere. Flow in convergent and divergent chennals.
Week 2 Dynamical similarity. Inspection analysis. Non-dimensional numbers. Dimensional analysis. Buckingham -theorem and its application.Physical importance of non-dimensional parameters.
Week 3 Prandtl boundary layer. Boundary layer equation in two-dimensions. The boundary layer on a flat plate (Blasius solution). Characteristic boundary layer parameters.
Week 4 Karman integral conditions. Karman-Pohlhausen method. Revision and class test Examples and Exercise

Name of the Assistant Professor	Dr Rekha
Class and Semester	B.Sc. 4 th Semester, Section: B, D
Subject	Mathematics
Paper	Programming in C and Numerical Methods

Week-1	Some Prerequisite.
Week-2	Programmer's model of a computer, Algorithms, Flow charts.
Week-3	Data types, Operators and expressions.
Week-4	Input / outputs functions. Class Test.
Week-5	Decisions control structure: Decision statements, Logical and conditional statements. Class Test.
Week-6	Implementation of Loops.
Week-7	Switch Statement & Case control structures. Functions.
Week-8	Preprocessors and Arrays. Class Test.
Week-9	Strings: Character Data Type, Standard String handling Functions, Arithmetic Operations on Characters
Week- 10	Structures: Definition, using Structures, use of Structures in Arrays and Arrays in Structures.
Week- 11	Pointers: Pointers Data type, Pointers and Arrays, Pointers and Functions.
Week- 12	Solution of Algebraic and Transcendental equations: Bisection method, Regula-Falsi method, Secant method, Newton-Raphson's method.
Week- 13	Newton's iterative method for finding pth root of a number, Order of convergence of above methods. Class Test.
Week-	Simultaneous linear algebraic equations: Gauss elimination method
14	Gauss-Jordan method, Class Test.
Week- 15	Triangularization method (LU decomposition method). Crout's method, Cholesky Decomposition method.
Week- 16	Iterative method, Jacobi's method, Gauss-Seidal's method, Relaxation method.
Week- 17	Revision and Class Test.

Name of the Assistant ProfessorMrs. AmitaClass and SemesterB.Sc. 4 th Sen		Mrs. Amita	
		B.Sc. 4 th Semester(Maths	
Subject		Mathematics	
Paper	Paper		
Week-1	Define Power series method and use it in finding solution	of differential equation	
Week-2	Introduce Beta and Gamma Functions and their properties	s	
Week-3	Define Bessel equation and finding its solution	Define Bessel equation and finding its solution	
Week-4	Define Bessel Function and its properties-Convergence, Recurrence		
Week-5	Define Orthogonality of Bessel functions and solving the problems of the students and discuss about		
Week-6	Legendre and Hermite differentials equations and their so	lutions	
Week-7	Legendre and Hermite functions and their properties-Recurrence Relations and generating functions		

Week-8	Orhogonality of Legendre and Hermite polynomials. Rodrigues' Formula for Legendre & Hermite Po		
Week-9	Laplace Integral Representation of Legendre polynomial and solving the problems of the students and		
Week-10	Class test of 1 st and 2 nd sections, Laplace Transforms – Existence theorem for Laplacetransforms, Lin		
Week-11	Laplace transforms of derivatives and integrals, Differentiation and integration of Laplace transforms		
Week-12	Convolution theorem, Inverse Laplace transforms, convolution theorem, Inverse Laplacetransforms of		
Week-13	solution of ordinary differential equations using Laplace transform and solving theproblems of the st		
Week-14	Fourier transforms: Linearity property, Shifting, Modulation, Convolution Theorem		
Week-15	Fourier Transform of Derivatives, Relations between Fourier transform and Laplacetransform		
Week-16	Parseval's identity for Fourier transforms, solution of differential Equations usingFourier Transform		
Week-17	solving the problems of the students and discuss about whole Section-4, solving the problems of the students and discuss about whole Section-4, Class test of 3 rd and 4 th sections		
Name of Assistant Profe	Mrs. Amita		
Class and Semester	B.Sc 2nd semester (section - A and D)		
Subject	Mathematics		
Paper	VECTOR CALCULUS		
Week - 1	Scalar and vector product of three vectors, product of four vectors.		
Week – 2	Reciprocal vectors. Vector differentiation.		
Week – 3	Scalar Valued point functions, vector valued point functions, derivative along a curve,		
Week-4	directional derivatives		
Week - 5	Gradient of a scalar point function, geometrical interpretation of grad Φ ,		
Week – 6	character of gradient as a point function.		
Week – 7	Divergence and curl of vector point function, characters of Div fp and Curl fp as point function, examples.		
Week-8	Gradient, divergence and curl of sums and product and their related vector identities. Laplacian operator		
Week - 9	Orthogonal curvilinear coordinates Conditions for orthogonality fundamental triad of mutually orthogonal unit vectors.		

Week – 10	Gradient, Divergence, Curl
Week – 11	Laplacian operators in terms of orthogonal curvilinear coordinates,
Week – 12	Cylindrical co-ordinates and Spherical co- ordinates.
Week - 13	Vector integration; Line integral.
Week – 14	Surface integral, Volume integral.
Week – 15	Theorems of Gauss, Green & Stokes and problems based on these theorems.
Week – 16	Revision and Class test

Name of Assistant Professor Class and Semester		Dr. Sheetal Chawla B.Com (Semester – 2) Section A
Paper		Business Mathematics
Week - 1	Definition of matrix, its types and algebra of matrices.	
Week-2	Calculation of values of determinants upto third order.	
Week – 3	Adjoint of a matrix, elementary row and column operations, Class Test.	
Week-4	Finding inverse matrix through adjoint matrix and row/ column operations.	
Week - 5	Solution of a system of linear equations having unique solution and including not more than three variables, Class Test.	

Week - 6	Differentiation.
Week – 7	Differentiation continued, Class Test.
Week-8	Application of derivatives.
Week-9	Application of derivatives continued, Class Test.
Week - 10	Different types of interest rates, concepts of present value and amount of a sum.
Week – 11	Type of annuities,
Week – 12	Class Test
Week – 13	Present value and amount of an annuity including the case of continuous compounding.
Week - 14	Ratio, Class Test.
Week – 15	Proportion and percentage.
Week-16	Profit and loss
Week-17	Revision and Class Test.

Name of the Assistant/Associate Professor: Dr Sheetal Chawla
Class and Section: B.Sc. Math Hons. (VI semester)
Subject: MATHEMATICS
Paper: Dynamics

Week 1 Velocity and acceleration along radial and transverse velocity Week 2 Examples and Exercise related to Velocity and acceleration along radial and transversevelocity Week 3 Acceleration along tangent and normal directions Week 4 Relative velocity and acceleration Week 5 Simple Harmonic motion, Examples and Exercise related to S.H.M. Week 6 Elastic Strings and Examples and Exercise related to Elastic Strings Week 7 Mass, Momentum and Force and Examples and Exercise related to Mass, Momentum and Force Week 8 Newton laws of motion Examples and Exercise Week 9 Work, Power and Energy Examples and Exercise Week 10 Definition of Conservative forces Examples and Exercise Week 11 Im Motion on smooth and rough plane curves **Examples and Exercise** Week 13 Projectile motion of a particle in a plane **Examples and Exercise** Week 14

Vector angular velocity, General motion of a rigid body Examples and Exercise

Week 15 Central Orbits, Kepler's laws of motion

Examples and Exercise

Week 16

Motion of a particle in three dimension, Acceleration in terms of different coordinate Systems, Examples and Exercise

Week 17

Problem discussion and assignment submission

Week 18

Revision and class test pulsive forces, Examples and Exercise

Name of the Assistant/Associate Professor: Dr Sheetal Chawla

Class and Section: B.Sc. Math (IV semester)

Subject: MATHEMATICS

Paper: Sequence and Series

Week 1

Some def. Related to Sets, Boundedness of the set of real numbers, Some Theorems on Least Upper Bound of a set, Some Theorems on Greatest Lower Bound of a set, Completeness Axiom, Archimedean Property of Reals, Neighborhood of a point

Week 2

Deleted Nbd, Interior point of a set, Some Theorems on open Sets, Closed sets, their examples, Some Theorems on closed Sets, Limit point of a set, some Important theorems and Revision

Week 3

Examples on limit point, Open sets, their examples, Related Theorems of open sets, Closed sets, Interior of a set, Closure of a set in real numbers and their properties

Week 4

Bolzano- Weierstrass Theorem, Open covers, Compact sets and Heine- Borel Theorem, Revision, Problem Discussion and test of Unit-1

Week 5

Real Sequence and Convergence, Some Theorems on Convergent Sequence, Examples on Convergent Sequence, Some basic Theorems on Limits, Squeeze principle, Cauchy's Theorem on Limits, Related Examples of Cauchy's Theorem, Bounded and Monotonic Sequences, Examples on Monotonic Sequences

Week 6

Limit Point, Cauchy's Sequence, Cauchy's General principle of convergence, Examples on Cauchy's Sequence, Subsequences, Subsequential limits, Infinite Series, Convergence and Divergence of an infinite series

Week 7

Examples on convergence and divergence of the series, Comparison test of positive terms infinite series, Cauchy's general principle of convergence of series, Convergence and divergence of geometric series, Hyper harmonic series or p-series, Revision, Problem discussion and test.

Week 8

Infinite Series: D' Alembert's Ratio Test, Examples on Alembert's Ratio Test, Cauchy's Root Test, Examples on Cauchy's Root Test, Rabbe's Test, Examples on Rabbe's Test

Week 9

Logarithmic Test, Examples on Logarithmic Test, De Morgan and Bertrand's Test, Examples on De Morgan and Bertrand's Test, Cauchy's nth root test, Examples on Cauchy's nth root test

Week 10

Gauss Test, Examples on Gauss Test, Cauchy's Integral Test, Examples on Cauchy's Integral Test, Cauchy's Condensation Test, Examples on Cauchy's Condensation Test, Revision and Problem Discussion and Test

Week 11

Leibnitz's Test for the convergence of alternating series, Examples on above topic, Abel's lemma, Abel'sTest, Dirichlet's Test, their examples, Insertion and removal of parenthesis, Re-arrangement of terms in aseries, Dirichlet's Theorem

Week 12

Riemann's Re-arrangement Theorem, Pringsheim Theorem and their examples Revision and Multiplicationof series

Week 13

Product Theorem, Cauchy's Theorem, Mertin's Theorem their examples Cesaro's Theorem, Abel's Theorem their examples

Week 14

Infinite Product, Sequence of Partial Product and their examples General Principles of convergence of anInfinite Product

Week 15

Some Theorems for proving the convergence of Infinite Products, Test and submission of assignment

Week 16

Absolute convergence of an infinite product, Problem discussion and test

Week 17

Problem discussion andassignment submission

Week 18

Revision and class test

Name of Assistant Professor	Dr.Upma
Class and Semester	B.Sc PHYSICS(Hons) Semester-II
Subject	Mathematics

Paper	Mathematics-II	
Week - 1	Functions of a real variable. Limits, continuity and differentiability of functions.	
Week – 2	Uniform continuity on (a,b) implying uniform theorem for analytic functions.	
Week – 3	Intermediate value theorems and Taylor's theorem and analytic functions.	
Week-4	Taylor's and Maclaurin's series of elementary analytic functions	
Week - 5	Functions of two and three reals variables their continuity	
Week – 6	Functions of two and three reals variables their differentiability	
Week – 7	Schwarz and Young theorem, implicit function theorem	
Week-8	Definition and examples of Riemann integral of a bounded function	
Week - 9	Riemann integrability of continuous and monotonic functions.	
Week – 10	Riemann integral as the limit of a sum.	
Week - 11	The fundamental theorem of integral calculus. Mean-value theorems	
Week – 12	Integration of rational and irrational functions.	
Week - 13	Integration by partial functions	
Week-14	Properties of definite integral	
Week – 15	Reduction formulae	
Week-16	Revision and Class test	

Name of Assistant Professor	Dr.Upma
Class and Semester	B.Sc 2nd semester (section - C)
Subject	Mathematics

Paper	VECTOR CALCULUS	
Week - 1	Scalar and vector product of three vectors, product of four vectors.	
Week – 2	Reciprocal vectors. Vector differentiation.	
Week – 3	Scalar Valued point functions, vector valued point functions, derivative along a curve,	
Week-4	directional derivatives	
Week - 5	Gradient of a scalar point function, geometrical interpretation of grad Φ ,	
Week-6	character of gradient as a point function.	
Week-7	Divergence and curl of vector point function, characters of Div fp and Curl fp as point function, examples.	
Week – 8	Gradient, divergence and curl of sums and product and their related vector identities. Laplacian operator	
Week - 9	Orthogonal curvilinear coordinates Conditions for orthogonality fundamental triad of mutually orthogonal unit vectors.	
Week – 10	Gradient, Divergence, Curl	
Week – 11	Laplacian operators in terms of orthogonal curvilinear coordinates,	
Week – 12	Cylindrical co-ordinates and Spherical co- ordinates.	
Week - 13	Vector integration; Line integral.	
Week-14	Surface integral, Volume integral.	
Week-15	Theorems of Gauss, Green & Stokes and problems based on these theorems.	
Week-16	Revision and Class test	

Name of Assistant Professor		Dr.Upma
Class and Semester		B.Sc Maths Hons 2nd semester
Subject		Mathematics
Paper		Regression Analysis and Probability
Week - 1	Linear Regression: Concept of regression, principle of least squares and fitting of straight line	
Week – 2	Derivation of two lines of regression, properties of regression coefficients	
Week – 3	Standard error of estimate obtained from regression line, correlation coefficient between	

	observed and estimated values
Week-4	Angle between two lines of regression. Difference between correlation and regression.
Week - 5	Curvilinear Regression: Fitting of second degree parabola
Week-6	Power curve of the type $Y=ax^b$, exponential curves of the types $Y=ab^x$ and $Y=ae^{bx}$.
Week – 7	Concepts in Probability: Random experiment, trial, sample point, sample space, operation of events, exhaustive, equally likely and independent events,
Week-8	Definition of probability—classical, relative frequency, statistical and axiomatic approach
Week - 9	Addition and multiplication laws of probability, Boole's inequality.
Week – 10	Bayes' theorem and its applications. Random Variable and Probability Functions
Week – 11	Definition and properties of random variables, discrete and continuous random variable
Week – 12	Probability mass and density functions, distribution function.
Week - 13	Concepts of bivariate random variable: joint, marginal and conditional distributions.
Week-14	Mathematical Expectation: Definition and its properties-moments
Week-15	Measures of location, dispersion, skewness and kurtosis
Week-16	Revision and Class test

Name of Assistant Professor		Dr.Upma
Class and Semester		B.Sc PHYSICS(Hons) Semester-IV
Subject		Mathematics
Paper		Mathematics-IV
Week - 1	Discrete and continuous distribution and distributions.	
Week – 2	Binomial distribution, Poisson distribution	
Week-3	Geometric distribution, Normal distribution	
Week-4	Exponential distribution	
Week - 5	Bivariate distribution, conditional distribution and marginal distribution	
Week-6	Correlation and regression for two variables only	

Week – 7	Weak law of large numbers
Week-8	Central limit theorem for independent and identically distributed random variables.
Week - 9	Definitions of random sample, parameter and statistic.
Week – 10	Concept of sampling distribution
Week – 11	Standard error sampling distribution of mean variance of random sample from a normal
	population.
Week – 12	Tests of significance based on t
Week - 13	Tests of significance based on f
Week – 14	Chi-square distributions.
Week – 15	Numerical Problems on sampling
Week - 16	Revision and Class test

Name of the Assistant Professor		Suman
Class and Semester		B.Sc. 4 th Semester, B.A.
Subject		Mathematics
Paper		Special Functions and Integral Transforms
Week-1	Define Power series method and use it in finding solution of differential equation	
Week-2	Introduce Beta and Gamma Functions and their properties	
Week-3	Define Bessel equation and find	ling its solution
Week-4	Define Bessel Function and its	properties-Convergence, Recurrence
Week-5	Define Orthogonality of Bessel	functions and solving the problems of the students and
	discuss about whole Section-1	
Week-6	Legendre and Hermite different	tials equations and their solutions
Week-7	Legendre and Hermite function	ns and their properties-Recurrence Relations and
	generating functions	
Week-8	Orhogonality of Legendre and I	Hermite polynomials. Rodrigues' Formula for Legendre
	& Hermite Polynomials,	

Week-9	Laplace Integral Representation of Legendre polynomial and solving the problems of the students and discuss about whole Section-2		
Week-10	Class test of 1 st and 2 nd sections, Laplace Transforms – Existence theorem for Laplace		
	transforms, Linearity of the Laplace transforms, Shifting theorems		
Week-11	Laplace transforms of derivatives and integrals, Differentiation and integration of Laplace transforms		
Week-12	Convolution theorem, Inverse Laplace transforms, convolution theorem, Inverse Laplace transforms of derivatives and integrals		
Week-13	solution of ordinary differential equations using Laplace transform and solving the problems of the students and discuss about whole Section-3		
Week-14	Fourier transforms: Linearity property, Shifting, Modulation, Convolution Theorem		
Week-15	Fourier Transform of Derivatives, Relations between Fourier transform and Laplace		
	transform		
Week-16	Parseval's identity for Fourier transforms, solution of differential Equations using		
	Fourier Transforms.		
Week-17	solving the problems of the students and discuss about whole Section-4, solving the		
	problems of the students and discuss about whole Section-4, Class test of 3 rd and 4 th		
	sections		

Name of the Assistant Professor	Suman
Class and Semester	Chem. Hons. 2nd Semester
Subject	Mathematics
Paper	Mathematics-II Optional

Week 1	Matrices. Operations on matrices. Determinants. Adjoint and inverse of a matrix
Week 2	Rank of a matrix. Simultaneous equations: method of substitution and elimination, Consistency and independence. Homogeneous linear equations. Simultaneous equations with more
Week 3	Simultaneous equations with more than two unknowns, Cramer's rule, matrix eigen values and eigenvectors, Diagonalization of a matrix.
Week 4	Definition of a group with example
Week 5	simple properties of groups, Subgroups,
Week 6	Generation of groups, cyclic groups, Cosets, Left and right cosets, Index of a sub-group

Week 7	Coset decomposition, Lagrange's theorem.
Week 8	Normal subgroups, Quotient groups
Week 9	Cartesian Coordinates, Distance between two points,
Week 10	Various forms of the equation of a line.
Week 11	General equation of a line. Circle, Parabola
Week 12	General equation of Ellipse and Hyperbola.
Week 13	Scalars and Vectors. product of two vectors, product of three vectors.
Week 14	Vector differentiation. Gradient of a scalar point function, Divergence and curl of vector point function
Week 15	Gradient, divergence and curl of sums and product and their related vector identities(without proofs). Laplacian operator.
Week 16	Problem discussion
Week 17	Test and submission of Assignment

Name of the Assistant Professor	Suman
Class and Semester	Chem. Hons. 4 th Semester
Subject	Mathematics
Paper	Mathematics-IV Optional

Week 1	Solution of Algebraic and Transcendental equations: Bisection method, Regula-Falsi method, Newton-Raphson's method.	
Week 2	Numerical Integration: Trapezoidal rule,	
Week 3	Simpson's one-third and three-eighth rule, Gauss Quadrature formula	
Week 4	Concepts in Probability: Random experiment, trial, exhaustive, equally likely	
Week 5	independent events. Definition of probability- classical,	
Week 6	relative frequency	
Week 7	Problems related to relative frequency	
Week 8	Statistical and axiomatic approach,	
Week 9	Addition and multiplication laws of probability	
Week 10	Bayes theorem and its Application	
Week 11	Regression: Concept of regression,	
Week 12	two lines of regression,	
Week 13	Test of significance:t-test for single mean,	
Week 14	Chi-square test, ANOVA for one way	
Week 15	Chi-square test, ANOVA for two way classified data	
Week 16	Test and Submission of Assignment	

Week 17 Problem discussion and Test

Name of the Assistant/Associate Professor: Suman Class and Section: B.Sc. Math (IV semester) Section C Subject: MATHEMATICS

Paper: Sequence and Series

Week 1 Some def. Related to Sets, Boundedness of the set of real numbers, Some Theorems on Least Upper Bound of a set, Some Theorems on Greatest Lower Bound of a set, Completeness Axiom, Archimedean Property of Reals, Neighborhood of a point	
Week 2 Deleted Nbd, Interior point of a set, Some Theorems on open Sets, Closed sets, their examples, Some Theorems on closed Sets, Limit point of a set, some Important theorems and Revision	Week 11 L
Week 3 Examples on limit point, Open sets, their examples, Related Theorems of open sets, Closed sets, Interior of a set, Closure of a set in real numbers and their properties	ei bn itz' s
Week 4 Bolzano- Weierstrass Theorem, Open covers, Compact sets and Heine- Borel Theorem, Revision, Problem Discussion and test of Unit-1	Te st for th
Week 5 Real Sequence and Convergence, Some Theorems on Convergent Sequence, Examples on Convergent Sequence, Some basic Theorems on Limits, Squeeze principle, Cauchy's Theorem on Limits, Related Examples of Cauchy's Theorem, Bounded and Monotonic Sequences, Examples on Monotonic Sequences	e co nv er ge
Week 6 Limit Point, Cauchy's Sequence, Cauchy's General principle of convergence, Examples on Cauchy's Sequence, Subsequences, Subsequential limits, Infinite Series, Convergence and Divergence of an infinite series	nc e of alt
Week 7 Examples on convergence and divergence of the series, Comparison test of positive terms infinite series, Cauchy's general principle of convergence of series, Convergence and divergence of geometric series, Hyper harmonic series or p-series, Revision, Problem discussion and test.	er na tin g
Week 8 Infinite Series: D' Alembert's Ratio Test, Examples on Alembert's Ratio Test, Cauchy's Root Test, Examples on Cauchy's Root Test, Rabbe's Test, Examples on Rabbe's Test	se rie s, Ex
Week 9 Logarithmic Test, Examples on Logarithmic Test, De Morgan and Bertrand's Test, Examples on De Morgan and Bertrand's Test, Cauchy's nth root test, Examples on Cauchy's nth root test Week 10	a m pl es
Gauss Test, Examples on Gauss Test, Cauchy's Integral Test, Examples on Cauchy's Integral Test, Cauchy's Condensation Test, Revision and Problem Discussion and Test	on ab ov e
ا pic, Abel's lemma, Abel'sTest, Dirichlet's Test, their examples, Insertion and removal of parenthesis, Re-	to

pic, Abel's lemma, Abel'sTest, Dirichlet's Test, their examples, Insertion and removal of parenthesis, I arrangement of terms in aseries, Dirichlet's Theorem

Week 12

Riemann's Re-arrangement Theorem, Pringsheim Theorem and their examples Revision and Multiplication of series

Product Theorem, Cauchy's Theorem, Mertin's Theorem their examples Cesaro's Theorem, Abel's Theorem their examples

Week 14

Infinite Product, Sequence of Partial Product and their examples General Principles of convergence of an Infinite Product

Week 15

Some Theorems for proving the convergence of Infinite Products, Test and submission of assignment

Week 16

Absolute convergence of an infinite product, Problem discussion and test

Week 17

Problem discussion and assignment submission

Week 18

• Revision and class test

Assistant F	Professor	Asha Rani
Class and S	Semester	B.Sc. NM (sem 2)
Subject		Mathematics
Paper		ODE
Week 1	Definition of different formation of different differential equation, for Questions based on for	ntial equation, order and degree of differential equation, ntial equation. Questions based on order and degree of formation of differential equation. rmation of differential equation.
Week 2	Geometrical meanir differential equation. equation	ng of a differential equation. Solution of an exact Solution of an exact differential
Week 3	Definition of integ inspection. Rule1,2,3 question based on it.	grating factor, Finding integrating factor by 3,4 & 5 for finding integrating factor and
Week - 4	Doubts on previous t	opics.
Week - 5	Introduction of equat que for the equation for y. Working rule equation of the typ Clairaut's form. Singular solution	tion of first order but not of first degree. Working rule and solvable for p. Working ruleand que for equation solvable and que for equation solvable for x. Solution of the e $y=x\Phi(p)+f(p)$. Solution of the equation reducible to on, p and c-discriminant.
Week – 6	Orthogonal trajectory	y in cartesian and polar coordinates
Week – 7	Definition of linear d definition of auxiliar constant coeff. Invers few theorems & question based on ab	lifferential equation with constant coeff., Doperator, y equation, complete solution fordifferential equation with se operator, complementary function, particular integral, ove topic
Week – 8	Evaluate 1/f(D) x ^m , 1 homogeneous linear differential equation	/f(D) (xV) and que based on it. Method to solve equation. Explanation of the method of solution of linear reducible to homogeneous

	linear form. Question based on linear differential equation reducible to
	homogeneous linear form
Week-9	Introduction to linear differential equation of second order. method
	to find P.I. of $d^2y/dx^2+Pdy/dx+Qy=0$. Queaction based on P.I. of
	$\frac{d^2y}{dx^2} + \frac{Pdy}{dx} + \frac{Qy=0}{2}.$

Week – 10	Solution of a linear differential equation of second order by removing the first derivative and changing the dependent variable. Solution of a linear differential equation of second order by changing the independent variable.
Week – 11	Solution of a linear differential equation of second order by the method of variation of parameters. Solution of a linear differential equation of second order by the method of undeterminedcoefficient
Week-12	Doubts and Class Test.
Week - 13	Introduction to ordinary simultanious differential equation. Solution of simultaneous differential equations involving operators $x (d/dx)$ or $t (d/dt)$ etc. Solution of Simultaneous equation of the form $dx/P = dy/Q = dz/R$.
Week – 14	Concept of Second integral found with the help of first. Introduction to total differential equation and condition for exactness. Method to solve total differential equation. Solution when one variable is constant out of three variable in Pdx+Qdy+Rdz=0
Week – 15	Method of solving homogeneous equation. Method of auxiliary equation
Week -16	Revision of some typical topics and doubts clearance. Tests and presentation.
Week -17,18	Assignment, Test, Doubts Session

Lesson Plan January 2024 to April 2024

Name of the Assistant/Associate Professor: Dr Ravinder

Class and Section: B.Sc. (VI semester)

Subject: MATHEMATICS

Paper: Dynamics

Week 1

Velocity and acceleration along radial and transverse velocity

Week 2

Examples and Exercise related to Velocity and acceleration along radial and transverse velocity

Week 3

Acceleration along tangent and normal directions

Week 4

Relative velocity and acceleration

Week 5

Simple Harmonic motion, Examples and Exercise related to S.H.M.

Week 6

Elastic Strings and Examples and Exercise related to Elastic Strings

Week 7

Mass, Momentum and Force and Examples and Exercise related to Mass, Momentum and Force

Week 8

Newton laws of motion Examples and Exercise

Week 9

Work, Power and Energy Examples and Exercise

Week 10

Definition of Conservative forces Examples and Exercise

Week 11 Impulsive forces, Examples and Exercise

Week 12

Motion on smooth and rough plane curves Examples and Exercise

Week 13

Projectile motion of a particle in a plane Examples and Exercise

Week 14

Vector angular velocity, General motion of a rigid body Examples and Exercise

Week 15

Central Orbits, Kepler's laws of motion Examples and Exercise

Week 16

Motion of a particle in three dimension, Acceleration in terms of different coordinate Systems, Examples and Exercise

Week 17

Problem discussion and

Name of Assistant Professor		Ravinder kumar
Class and Semester		B.Com (Semester – 2) Section C
Subject		Mathematics
Paper		Business Mathematics
Week - 1	Definition of matr	ix, its types and algebra of matrices.
Week – 2	Calculation of valu	ies of determinants upto third order.
Week – 3	Adjoint of a matrix Test.	x, elementary row and column operations, Class
Week – 4	Finding inverse ma operations.	atrix through adjoint matrix and row/ column
Week - 5	Solution of a syste and including not	em of linear equations having unique solution more than three variables, Class Test.
Week - 6	Differentiation.	
Week – 7	Differentiation co	ntinued, Class Test.
Week – 8	Application of der	ivatives.
Week – 9	Application of der	ivatives continued, Class Test.
Week - 10	Different types of amount of a sum.	interest rates, concepts of present value and
Week – 11	Type of annuities,	
Week – 12	Class Test	
Week – 13	Present value and continuous compo	amount of an annuity including the case of ounding.
Week - 14	Ratio, Class Test.	
Week – 15	Proportion and pe	ercentage.

Week – 16	Profit and loss
Week – 17	Revision and Class Test.

Name of Assistant Professor		Dr Roji	
Class and Semester		B.A.	
Subject		Mathematics	
Paper		VECTOR CALCULUS	
Week - 1	Scalar and vector product of three vectors, product of four vectors.		
Week-2	Reciprocal vectors. Vector differentiation.		

Week-3	Scalar Valued point functions, vector valued point functions, derivative along a curve,
Week-4	directional derivatives
Week - 5	Gradient of a scalar point function, geometrical interpretation of grad Φ ,
Week-6	character of gradient as a point function.
Week – 7	Divergence and curl of vector point function, characters of Div fp and Curl fp as point function, examples.
Week-8	Gradient, divergence and curl of sums and product and their related vector identities. Laplacian operator
Week - 9	Orthogonal curvilinear coordinates Conditions for orthogonality fundamental triad of mutually orthogonal unit vectors.
Week-10	Gradient, Divergence, Curl
Week-11	Laplacian operators in terms of orthogonal curvilinear coordinates,
Week-12	Cylindrical co-ordinates and Spherical co- ordinates.
Week - 13	Vector integration; Line integral.
Week-14	Surface integral, Volume integral.
Week-15	Theorems of Gauss, Green & Stokes and problems based on these theorems.
Week-16	Revision and Class test

e Assistant Professor	Dr. Rozi, Suman B.Sc. 4 th Semester, B.A.
Semester	
	Mathematics
	Special Functions and Integral Transforms
Define Power series method and use it in finding solution of differential equation	
Introduce Beta and Gamma Functions and their properties	
Define Bessel equation and finding its solution	
Define Bessel Function and its properties-Convergence, Recurrence	
Define Orthogonality of Bessel functions and solving the problems of the students and discuss about whole Section-1	
	Semester Define Power series method an Introduce Beta and Gamma Fu Define Bessel equation and fin Define Bessel Function and its Define Orthogonality of Bessel discuss about whole Section-1

Week-6	Legendre and Hermite differentials equations and their solutions	
Week-7	Legendre and Hermite functions and their properties-Recurrence Relations and generating functions	
Week-8	Orhogonality of Legendre and Hermite polynomials. Rodrigues' Formula for Legendre & Hermite Polynomials,	
Week-9	Laplace Integral Representation of Legendre polynomial and solving the problems of the students and discuss about whole Section-2	
Week-10	Class test of 1 st and 2 nd sections, Laplace Transforms – Existence theorem for Laplace transforms, Linearity of the Laplace transforms, Shifting theorems	
Week-11	Laplace transforms of derivatives and integrals, Differentiation and integration of Laplace transforms	
Week-12	Convolution theorem, Inverse Laplace transforms, convolution theorem, Inverse Laplace transforms of derivatives and integrals	
Week-13	solution of ordinary differential equations using Laplace transform and solving the problems of the students and discuss about whole Section-3	
Week-14	Fourier transforms: Linearity property, Shifting, Modulation, Convolution Theorem	
Week-15	Fourier Transform of Derivatives, Relations between Fourier transform and Laplace	
	transform	
Week-16	Parseval's identity for Fourier transforms, solution of differential Equations using	
	Fourier Transforms.	
Week-17	solving the problems of the students and discuss about whole Section-4, solving the	
	problems of the students and discuss about whole Section-4, Class test of 3 rd and 4 th sections	

Name of Assistant Professor		Rajesh Mor
Class and Semester		B.A & B.Sc. (NM) 2nd Semester
Subject		Mathematics
Paper		ODE
		January
Week – 3	Definition of differential equation, order and degree of differential	
	equation, formation	on of differential equation. Questions based on
	order and degree of	of differential equation, formation of differential
	equation. Que base	ed on formation of differential equation.
	Geometrical meaning of a differential equation. Solution of an	
	exact differential equation. Solution of an exact differential	
	equation	
Week-4	Definition of integrating factor, Finding integrating factor by	
	inspection. Rule1,	2,3,4 & 5 for finding integrating factor and
	question based on it.	
Week - 5	Doubts on previous topics.	
	1	February
Week - 1	Introduction of equation of first order but not of first degree.	
	Working rule and que for the equation solvable for p. Working rule	
	and que for equation solvable for y. Working rule and que for	
	equation solvable $\Phi(x) = \Phi(x) + \Phi(x)$	for x. Solution of the equation of the type
	$y=x\Phi(p)+f(p)$. Sol	lution of the equation reducible to Clairaut's
	form. Singular sol	ution, p and c-discriminant.
Week -2	Orthogonal trajectory in cartesian and polar coordinates	
Week – 3	Definition of linea	ir differential equation with constant Coeff., D
	operator, definitio	n of auxiliary equation, complete solution for
	differential equation	on with constant Coeff. Inverse operator,
	complementary function, particular integral, few theorems &	
XX7 1 4	question based of	
Week – 4	Evaluate $1/t(D) x^n$	n , $1/1(D)$ (XV) and que based on it. Method to
	solve homogeneou	is linear equation. Explanation of the method of
	solution of linear of	unterential equation reducible to homogeneous

	linear form. Question based on linear differential equation		
	reducible to homogeneous linear form		
	Week March		
Week-1	Introduction to linear differential equation of second order. method		
	to find P.I. of $d^2y/dx^2+Pdy/dx+Qy=0$. Questions based on P.I. of		
	$d^2y/dx^2+Pdy/dx+Qy=0.$		
Week-2	Solution of a linear differential equation of second order by		
	removing the first derivative and changing the dependent variable.		
	Solution of a linear differential equation of second order by		
	changing the independent variable.		
Week-3	Solution of a linear differential equation of second order by the		
	method of variation of parameters. Solution of a linear differential		
	equation of second order by the method of undetermined		
	coefficient		
Week-4	Doubts and Class Test.		
	April		
Week - 1			
	Introduction to ordinary simultaneous differential equation.		
	Solution of simultaneous differential equations involving operators		
	x (d/dx) or t (d/dt) etc. Solution of Simultaneous equation of the		
	form dx/P = dy/Q = dz/R.		
Week – 2	Concept of Second integral found with the help of first.		
	Introduction to total differential equation and condition for		
	exactness. Method to solve total differential equation. Solution		
	when one variable is constant out of three variables in		
	Pdx+Qdy+Rdz=0		
Week – 3	Method of solving homogeneous equation. Method of auxiliary		
	equation.		
Week – 4	Assignment, Test, Doubts Session		

	Мау
Week 1,2	Revision of some typical topics and doubts clearance . Tests and presentation.

Name of College: Pt. Neki Ram Sharma Government College, Rohtak, Academic Session 2023-24 Semester: Even Name of Asstt./Ass. Prof : Mr. Sanjay Class: B.Sc(Pass) 4th Semester (Mathematics) Section D Name of Subject: Sequence and Series

01 st January 202	24 to 30 th April 2024
	Month (January)
Week 1	Some def. Related to Sets, Boundedness of the set of real numbers, Some Theorems on Least Upper Boundof a set, Some Theorems on Greatest Lower Bound of a set, Completeness Axiom, Archimedean Property of Reals, Neighborhood of a point
Week 2	Deleted Nbd, Interior point of a set, Some Theorems on open Sets, Closed sets, their examples, SomeTheorems on closed Sets, Limit point of a set, some Important theorems and Revision
Week 3	Examples on limit point, Open sets, their examples, Related Theorems of open sets, Closed sets, Interior ofa set, Closure of a set in real numbers and their properties
Week 4	Bolzano- Weierstrass Theorem, Open covers, Compact sets and Heine- Borel Theorem, Revision, ProblemDiscussion and test of Unit-1
Week 5	Real Sequence and Convergence, Some Theorems on Convergent Sequence, Examples on Convergent Sequence, Some basic Theorems on Limits, Squeeze principle, Cauchy's Theorem on Limits, Related Examples of Cauchy's Theorem, Bounded and Monotonic Sequences, Examples on Monotonic Sequences
	Month (February)
Week 6	Limit Point, Cauchy's Sequence, Cauchy's General principle of convergence, Examples on Cauchy's Sequence,Subsequences, Subsequential limits, Infinite Series, Convergence and Divergence of an infinite series
Week 7	Examples on convergence and divergence of the series, Comparison test of positive terms infinite series, Cauchy's general principle of convergence of series, Convergence and divergence of geometric series, Hyper harmonic series or p-series, Revision, Problem discussion and test.
Week 8	Infinite Series: D' Alembert's Ratio Test, Examples on Alembert's Ratio Test, Cauchy's Root Test, Examples on Cauchy's Root Test, Rabbe's Test, Examples on Rabbe's Test
Week 9	Logarithmic Test, Examples on Logarithmic Test, De Morgan and Bertrand's Test, Examples on De Morgan and Bertrand's Test, Cauchy's nth root test, Examples on Cauchy's nth root test Month (March)

Week 10	Gauss Test, Examples on Gauss Test, Cauchy's Integral Test, Examples on Cauchy's Integral Test, Cauchy's Condensation Test, Examples on Cauchy's Condensation	
Week 11	Leibnitz's Test for the convergence of alternating series, Examples on above topic, Abel's lemma, Abel's Test, Dirichlet's Test, their examples, Insertion and removal of parenthesis, Re-arrangement of terms in a series, Dirichlet's Theorem	
Week 12	Riemann's Re-arrangement Theorem, Pringsheim Theorem and their examples Revision and Multiplicationof series	
Week 13	Vacation Holi	
Month (April)		
Week 14	Product Theorem, Cauchy's Theorem, Mertin's Theorem their examples Cesaro's Theorem, Abel's Theorem their examples	
Week 15	Infinite Product, Sequence of Partial Product and their examples General Principles of convergence of anInfinite Product	
Week 16	Some Theorems for proving the convergence of Infinite Products, Test and submission of assignment	
Week 17	Absolute convergence of an infinite product, Problem discussion and test	
Week 18 Upto to 30 April	Revision, Assignment and Test	

B.Sc. (Hons)4 th Semester

Name of Assistant Professor		Sanjay	
Class and Semester		B. Sc.Hond(Semester – 4)	
Subject		Mathematics	
Paper		Elementary Inference	
Week - 1	Statements of parameter and statistic, distribution and sampling error.		
Week – 2	Point and interwal estimation, Unbiased estimator and their examples.		
Week - 3	Efficiency,Consistency		
Week - 4	Sufficiency and their examples		
Week - 5	Method of maximum likelihood estimator		
Week - 6	Examples based on maximum likelihood estimator		
Week - 7	Examples based on maximum likelihood estimator		
Week - 8	simple and composite hypotheses		
Week - 9	Critical region, level of significance		
Week - 10	one tailed and two tailed test.		

Week - 11	Types of error
Week – 12	Neymann Pearson lemma and their examples
Week – 13	Testing and interwal estimation of a single mean, single proportion and their examples.
Week – 14	Difference between two mean and two proportion.Fisher's Z transformation
Week - 15	Definition of Chi-square statistic, Chi-square tests for goodness of fit and independence of attributes.,
Week – 6	Definition of Student's 't' and Snedcor's F-statistics. Testing for the mean and variance of univariate normal distributions
Week – 17	Testing of equality of two means and two variances of two univariate normal distributions. Related confidence intervals. Analysis of variance(ANOVA) for one-way and two-way classified data.
Week - 18	Revision

Name of Assistant Professor		Vikash	
Class and Semester		B.Sc. (MH) 6th Semester	
Subject		Mathematics	
Paper		Fluid Dynamics	
W. 1 2	Vinamatica Eula	January	
week – 3	Kinematics - Eulerian and Lagrangian methods. Stream lines, path lines and streak lines.		
Week-4	Velocity potential	. Irrotational and rotational motions	
Week - 5	Vortex lines. Equa Doubts on previ	ation of continuity. Boundary surfaces.	
	F	February	
Week - 1	Acceleration at a	point of a fluid. Components of acceleration in	
cylindrical and spherical polar co-ordiantes,		herical polar co-ordiantes,	
Week-2	Pressure at a point of a moving fluid. Euler's and Lagrange's		
Week 2	equations of motion.		
Week - 5	Bernoulli's equation. Impulsive motion.		
Week – 4	Week – 4 Stream function and Doubts on previous topics.		
XXX 1 4	A 11 1 11 1	Week March	
Week– I	Acyclic and cyclic i irrotational flow.	rrotational motions. Kinetic energy of	
Week – 2	Kelvin's minimum	energy theorem. Axially symmetric	
	flows. Liquid strea	ming past a fixed sphere.	
Week – 3	Motion of a sphere	through a liquid at rest at infinity.	
	Equation of motion	n of a sphere.	
Week-4	Three-dimensional	sources, sinks, doublets and their images. Stoke's	
	stream function. Doubts and Class Test.		
April			
Week - I	Irrotational motion	in two-dimensions. Complex velocity potential.	
Week – 2	Milne-Thomson cit doublets and their	rcle theorem. Two-dimensional sources, sinks, images. Blasius theorem.	
Week – 3	Two- dimensional in	rrotational motion produced by motion of	
	circular and coaxial	cylinders in an infinite mass of liquid.	
Week-4	Assignment, Test,	, Doubts Session	

Name of Assistant Professor		Vikash
Class and Semester		B.Sc. (MH) 4th Semester
Subject		Mathematics
Paper		HYDROSTATICS
		τ
	January	
Week – 3	Homogeneous and	l heterogeneous fluids.
Week-4	Elastic fluids. Surf	face of equal pressure. Fluid at rest under action of
	gravity. Rotating f	luids
Week - 5	Doubts on previous topics.	
		February
Week - 1	Fluid pressure on	plane surfaces.
Week – 2	Centre of pressure	. Resultant pressure on curved surfaces.
Week – 3	Equilibrium of flo	ating bodies.
Week-4	Curves of buoyancy. Surface of buoyancy.	
		Week March
Week-1	Stability of equilib	prium of floating bodies.
Week – 2	Vessels containing	g liquid and Metacentre.
Week-3	Work done in producing a displacement.	
Week-4	Doubts and Class	s Test.
		April
Week - 1 Gas laws. Mixture of gases.		
Week-2	Internal energy. Adiabatic expansion.	
Week – 3	Work done in com	pressing a gas. Isothermal atmosphere.
	Connective equilit	prium.
Week – 4	Assignment, Test	t, Doubts Session

Name of Subject: Programming in C and Numerical Methods

01 st January 20	01 st January 2024 to 30 th April 2024	
Month (January)		
Week 1	Some Prerequisite.	
Week 2	Programmer's model of a computer, Algorithms, Flow charts.	
Week 3	Data types, Operators and expressions.	
Week 4	Input / outputs functions. Class Test.	
Week 5	Decisions control structure: Decision statements, Logical and conditional statements. Class Test.	
Month (February)		
Week 6	Implementation of Loops.	
Week 7	Switch Statement & Case control structures. Functions.	
Week 8	Preprocessors and Arrays. Class Test.	
Week 9	Strings: Character Data Type, Standard String handling	
	Functions, Arithmetic Operations on Characters	
	Month (March)	
Week 10	Structures: Definition, using Structures, use of Structures in Arrays and Arrays in Structures.	
Week 11	Pointers: Pointers Data type, Pointers and Arrays, Pointers and Functions.	
Week 12	Solution of Algebraic and Transcendental equations: Bisection method, Regula-Falsi method, Secant method, Newton-Raphson's method.	
Week 13	Vacation Holi	
Month (April)		
Week 14	Newton's iterative method for finding pth root of a number,	
	Order of convergence of above methods. Class Test.	

Week 15	Simultaneous linear algebraic equations: Gauss-elimination	
	method, Gauss-Jordan method, Class Test.	
Week 16	Triangularization method (LU decomposition method). Crout's	
	method, Cholesky Decomposition method.	
Week 17	Iterative method, Jacobi's method, Gauss-Seidal's method,	
	Relaxation method.	
Week 18 Upto to 30 April	Revision and Class Test.	

Name of College: Pt. Neki Ram Sharma Government College, Rohtak, Academic Session 2023-24 Semester: Even Name of Asstt./Ass. Prof : Sunil Dua Class: B.Sc(H) 4th Semester (Mathematics)

Name of Subject: Sequence and Series

01 st January 20	024 to 30 th April 2024	
	Month (January)	
Week 1	Some def. Related to Sets, Boundedness of the set of real numbers, Some Theorems on Least Upper Boundof a set, Some Theorems on Greatest Lower Bound of a set, Completeness Axiom, Archimedean Property of Reals, Neighborhood of a point	
Week 2	Deleted Nbd, Interior point of a set, Some Theorems on open Sets, Closed sets, their examples, SomeTheorems on closed Sets, Limit point of a set, some Important theorems and Revision	
Week 3	Examples on limit point, Open sets, their examples, Related Theorems of open sets, Closed sets, Interior ofa set, Closure of a set in real numbers and their properties	
Week 4	Bolzano- Weierstrass Theorem, Open covers, Compact sets and Heine- Borel Theorem, Revision, ProblemDiscussion and test of Unit-1	
Week 5	Real Sequence and Convergence, Some Theorems on Convergent Sequence, Examples on Convergent Sequence, Some basic Theorems on Limits, Squeeze principle, Cauchy's Theorem on Limits, Related Examples of Cauchy's Theorem, Bounded and Monotonic Sequences, Examples on Monotonic Sequences	
	Month (February)	
Week 6	Limit Point, Cauchy's Sequence, Cauchy's General principle of convergence, Examples on Cauchy's Sequence,Subsequences, Subsequential limits, Infinite Series, Convergence and Divergence of an infinite series	
Week 7	Examples on convergence and divergence of the series, Comparison test of positive terms infinite series, Cauchy's general principle of convergence of series, Convergence and divergence of geometric series, Hyper harmonic series or p-series, Revision, Problem discussion and test.	
Week 8	Infinite Series: D' Alembert's Ratio Test, Examples on Alembert's Ratio Test, Cauchy's Root Test, Examples on Cauchy's Root Test, Rabbe's Test, Examples on Rabbe's Test	
Week 9	Logarithmic Test, Examples on Logarithmic Test, De Morgan and Bertrand's Test, Examples on De Morgan and Bertrand's Test, Cauchy's nth root test, Examples on Cauchy's nth root test Month (March)	
Month (March)		

Week 10	Gauss Test, Examples on Gauss Test, Cauchy's Integral Test, Examples on Cauchy's Integral Test, Cauchy's Condensation Test, Examples on Cauchy's Condensation	
Week 11	Leibnitz's Test for the convergence of alternating series, Examples on above topic, Abel's lemma, Abel's Test, Dirichlet's Test, their examples, Insertion and removal of parenthesis, Re-arrangement of terms in a series, Dirichlet's Theorem	
Week 12	Riemann's Re-arrangement Theorem, Pringsheim Theorem and their examples Revision and Multiplicationof series	
Week 13	Vacation Holi	
	Month (April)	
Week 14	Product Theorem, Cauchy's Theorem, Mertin's Theorem their examples Cesaro's Theorem, Abel's Theorem their examples	
Week 15	Infinite Product, Sequence of Partial Product and their examples General Principles of convergence of anInfinite Product	
Week 16	Some Theorems for proving the convergence of Infinite Products, Test and submission of assignment	
Week 17	Absolute convergence of an infinite product, Problem discussion and test	
Week 18 Upto to 30 April	Revision, Assignment and Test	

Name of College: Pt. Neki Ram Sharma Government College, Rohtak, Academic Session 2023-24 Semester: Even Name of Asstt./Ass. Prof : Dr. Rajeev Kumar Class: B.Sc 6th Semester (Mathematics) Section B Name of Subject: Real and Complex Analysis

01 st January 2024 to 30 th April 2024 Month (January)		
	Chain rule for Jacobians and related examples,	
	Numerical Problems related to Jacobian,	
	Functional Dependence and their examples and its numerical problems,	
	Beta function: definition and its properties,	
	Numerical Problems related to Beta function	
Week 2	Gamma function: definition and its recurrence formula,	
	Relationship between Beta and Gamma function and their properties.	
	Illustration with examples.	
Week 3	Duplication Formula and their examples,	
	Numerical Problems related to Duplication Formula.	
	L L	
Week 4	Evaluation of Double Integrals,	
	Examples related to Evaluation of Double Integrals and Substitution Method for	
	Double Integrals and its numerical problems,	
	Triple integrals – introduction, Substitution Method for Triple Integrals,	
	Numerical Problems related to Triple Integrals	
Week 5	Application of Double and Triple integrals for finding Area and Volume of	
	Surfaces,	
	Numerical Problems related to Application of Double and Triple integrals,	
	Dirichlet's Integral, Liouville's Extension of Dirichlet's integral,	
	Examples related to Dirichlet's Integral.	
	Month (February)	
Week 6	Numerical Problems related to Dirichlet's Integral and Liouville's Extension of	
	Dirichlet's integral,	
	Change of order of integration in double integrals Article and its examples and its	
	numerical problems.	
Week 7	Introduction to Complex Plane and Stereographic projection of complex numbers,	
	Examples related to Stereographic projection of complex numbers,	
	Complex Functions definitions, Limit, continuity, uniform continuity of complex	
	functions,	
	Examples related to Limit, continuity, uniform continuity of complex functions,	
	Differentiability of complex function, Rule of differentiation and geometric	
	interpretation of the derivative,	
	Numerical Problems related to Limit, continuity, Differentiability, uniform	
	continuity of complex functions.	
week 8	Analytic functions and Necessary condition for a function to be analytic, Cauchy-	
	Kiemann equations,	

	Sufficient condition for a function to be analytic and their examples,
	Cauchy-Riemann equations in Polar form, Orthogonal System.
Week 9	Harmonic functions and its examples, Construction of Analytic functions by Milne-Thompson's Method, by Exact Differential Method and their examples, Applications of Analytic functions to field and flow problems and numerical problems related to these topics.
	Month (March)
Week 10	Multi-valued Functions, Branch, Branch Cut, Branch Points, Exponential function, properties of exponential functions. Trigonometry functions and its properties, Hyperbolic functions and its properties, The Logarithmic functions and its properties, Inverse trigonometric and hyperbolic functions and its properties.
Week 11	Mappings, Translation mappings, Rotation mappings and their examples, Magnification, Rotation and Magnification, and their examples, Inversion mappings and its examples, Conformal mappings and its properties, Examples of Conformal mappings, Linear transformation, Bilinear transformation.
Week 12	Articles related to Linear transformation, Bilinear transformation and its examples, Critical points and its examples, Fixed points and their examples, Nature of Bilinear transformation and its examples, Some articles based on Bilinear transformation.
Week 13	Vacation Holi
	Month (April)
Week 14	Examples based on Bilinear transformation, Cross Ratio and its articles with examples, Inverse Points and their articles and examples, Exponential Transformations and its examples, Article based on Exponential Transformations, Logarithmic Transformations and its examples.
Week 15	Article based on Logarithmic Transformations, Trigonometric transformations and its examples, Article based on Trigonometric transformations , Linear fractional transformations and its examples, Article based on Linear fractional transformation.
Week 16	Revision, Problem discussion and Test
Week 17	Problem discussion
Week 18 Upto to 30 April	Revision, Assignment and Test

Name of the Assistant/Associate Professor: Dr Ritika

Class and Section: B.Sc. (Pass) 6th Semester (Section – A, B)

Subject: Mathematics

Paper: Real and Complex Analysis

Week 1

Jacobian:- basic definitions and examples,

Chain rule for Jacobians and related examples,

Numerical Problems related to Jacobian,

Functional Dependence and their examples and its numerical problems,

Beta function: definition and its properties,

Numerical Problems related to Beta function.

Assignments: Quiz/Presentation related to basics of Functions, Real and Complex plane

Week 2

Gamma function: definition and its recurrence formula, Relationship between Beta and Gamma function and their properties. Illustration with examples.

Assignments: Presentation of "Jacobians"

Week 3

Duplication Formula and their examples,

Numerical Problems related to Duplication Formula.

Assignments: Presentation of "Beta and Gamma functions"

Week 4

Evaluation of Double Integrals,

Examples related to Evaluation of Double Integrals and Substitution Method for Double Integrals and its numerical problems,

Triple integrals – introduction, Substitution Method for Triple Integrals,

Numerical Problems related to Triple Integrals.

Assignments: Test of "Jacobians" and "Beta and Gamma functions"

Week 5

Application of Double and Triple integrals for finding Area and Volume of Surfaces, Numerical Problems related to Application of Double and Triple integrals, Dirichlet's Integral, Liouville's Extension of Dirichlet's integral, Examples related to Dirichlet's Integral.

Assignments: Presentation of "Beta and Gamma functions"

Week 6

Numerical Problems related to Dirichlet's Integral and Liouville's Extension of Dirichlet's integral, Change of order of integration in double integrals Article and its examples and its numerical problems.

Assignments: Test of "Double and Triple integrals"

Week 7

Introduction to Complex Plane and Stereographic projection of complex numbers,

Examples related to Stereographic projection of complex numbers,

Complex Functions definitions, Limit, continuity, uniform continuity of complex functions,

Examples related to Limit, continuity, uniform continuity of complex functions,

Differentiability of complex function, Rule of differentiation and geometric interpretation of the

derivative,

Numerical Problems related to Limit, continuity, Differentiability, uniform continuity of complex functions.

Assignments: Presentation of "Fourier's series"

Week 8

Analytic functions and Necessary condition for a function to be analytic, Cauchy-Riemann equations, Sufficient condition for a function to be analytic and their examples, Cauchy-Riemann equations in Polar form, Orthogonal System.

Week 9

Harmonic functions and its examples, Construction of Analytic functions by Milne-Thompson's Method, by Exact Differential Method and their examples,

Applications of Analytic functions to field and flow problems and numerical problems related to these topics.

Assignments: Presentation of "Fourier's series"

Week 10

Multi-valued Functions, Branch, Branch Cut, Branch Points, Exponential function, properties of exponential functions. Trigonometry functions and its properties, Hyperbolic functions and its properties, The Logarithmic functions and its properties, Inverse trigonometric and hyperbolic functions and its properties.

Assignments: Test of "Fourier's series"

Week 11

Mappings, Translation mappings, Rotation mappings and their examples,

Magnification, Rotation and Magnification, and their examples,

Inversion mappings and its examples,

Conformal mappings and its properties,

Examples of Conformal mappings,

Linear transformation, Bilinear transformation.

Assignments: Presentation of "Calculus of Complex Functions"

Week 12

Articles related to Linear transformation, Bilinear transformation and its examples,

Critical points and its examples,

Fixed points and their examples,

Nature of Bilinear transformation and its examples,

Some articles based on Bilinear transformation.

Assignments: Presentation of "Calculus of Complex Functions"

Week 13

Examples based on Bilinear transformation,

Cross Ratio and its articles with examples,

Inverse Points and their articles and examples,

Exponential Transformations and its examples, Article based on Exponential Transformations,

Logarithmic Transformations and its examples.

Week 14

Article based on Logarithmic Transformations,

Trigonometric transformations and its examples, Article based on Trigonometric transformations, Linear fractional transformations and its examples, Article based on Linear fractional transformation.

Assignments: Presentation of "Elementary Functions and Mobius Transformations"

Week 15

Revision and Test

Assignments: Presentation OR Test of "Elementary Functions and Mobius Transformations" Week 16

Revision and Test

Assignments: Tests of Sections I & II

Week 17

Revision and Test

Assignments: Tests of Sections III & IV

Name of the Assistant/Associate Professor: Dr Ritika

Class and Section: M.Sc. Mathematics 1st Year (Second Semester)

Subject: Mathematics

Paper: Integral Equations and Calculus of Variations

Week 1

Linear Integral equations, Some basic identities.

Initial value problems reduced to Volterra integral equations and its related examples.

Assignments: Quiz / Presentation related to Integral Equations

Week 2

Methods of successive substitution and successive approximation to solve Volterra integral equations of second kind and its related examples.

Assignments: Presentation of "Initial value problems reduced to Volterra integral equations"

Week 3

Iterated kernels and Neumann series for Volterra equations and its related examples.

Assignments: Presentation of "Methods of successive substitution and successive approximation to solve Volterra integral equations of second kind"

Week 4

Resolvent kernel as a series and its related examples.

Laplace transform method for a difference kernel and its related examples.

Solution of a Volterra integral equation of the first kind and its related examples.

Assignments: Test of "Methods of successive substitution and successive approximation to solve Volterra integral equations of second kind"

Week 5

Boundary value problems reduced to Fredholm integral equations and its related examples. Methods of successive approximation to solve Fredholm equations of second kind and its related examples.

Assignments: Presentation of "Iterated kernels and Neumann series solution for Volterra integral

equations" Week 6 Methods of successive substitution to solve Fredholm equations of second kind and its related examples. Iterated kernels and Neumann series for Fredholm equations and its related examples. Assignments: Test of "Laplace transform method for a difference kernel" Week 7 Resolvent kernel as a sum of series and its related examples. Fredholm resolvent kernel as a ratio of two series and its related examples. Fredholm equations with separable kernels. Assignments: Presentation of "Boundary value problems reduced to Fredholm integral equations" Week 8 Fredholm equations with separable kernels and its related examples. Approximation of a kernel by a separable kernel and its related examples. Fredholm Alternative, Non-homonogenous Fredholm equations with degenerate kernels and its related examples. Week 9 Green function, Use of method of variation of parameters to construct the Green function for a Nonhomogeneous linear second order boundary value problem and its related examples. Basic four properties of the Green function. Assignments: Presentation of "Methods of successive approximation to solve Fredholm equations of second kind" Week 10 Alternate procedure for construction of the Green function by using its basic four properties and its related examples. Reduction of a boundary value problem to a Fredholm integral equation with kernel as Green function and its related examples. Assignments: Test of "Fredholm resolvent kernel method and Fredholm equations solution with separable kernels method" Week 11 Hilbert-Schmidt theory for symmetric kernels, its related articles and examples. Assignments: Test of "Green function and its properties" Week 12 Motivating problems of Calculus of variations, Shortest distance, Minimum surface of resolution, Brachistochrone problem, Isoperimetric problem, Geodesic and its related examples. Assignments: Presentation of articles "Reduction of a boundary value problem to a Fredholm integral equation with kernel as Green function" Week 13 Fundamental lemma of calculus of variations, Euler equation for one dependant function and its generalization to 'n' dependant functions and to higher order derivatives and its related examples. Week 14 Conditional extremum under geometric constraints and under integral constraints and its related examples. Assignments: Presentation of the concept "Calculus of variations and some of its standard problems" Week 15 **Revision and Test** Assignments: Tests of Sections I & II Week 16 Revision and Test Assignments: Tests of Sections III Week 17 Revision and Test

Name of the Assistant/Associate Professor: Dr Ritika

Class and Section: M.Sc. Mathematics 2nd Year (Fourth Semester)

Subject: Mathematics

Paper: Inner Product Spaces and Measure Theory

Week 1

Hilbert Spaces: Inner product spaces, Hilbert spaces, Schwarz inequality, Hilbert space as normed linear space.

Assignments: Quiz/Presentation related to "Inner Product Spaces"

Week 2

Convex sets in Hilbert spaces, Projection theorem.

Assignments: Presentation of "Results related to Pre-Hilbert Spaces"

Week 3

Orthonormal sets, Separability, Total Orthonormal sets, Bessel inequality.

Assignments: Presentation of "Results related to Hilbert Spaces"

Week 4

Parseval identity, Conjugate of a Hilbert space, Riesz representation theorem in Hilbert spaces.

Assignments: Test of Section I.

Week 5

Adjoint of an operator on a Hilbert space, Reflexivity of Hilbert space.

Assignments: Presentation of "Conjugate of a Hilbert Space"

Week 6

Self-adjoint operators, Positive operators, Product of Positive Operators.

Assignments: Presentation of "Riesz Representation Theorem in Hilbert Spaces".

Week 7

Projection operators, Product of Projections, Sum and Difference of Projections.

Assignments: Test of Section II.

Week 8

Normal and unitary operators, Projections on Hilbert space, Spectral theorem on finite dimensional space. Convex functions, Jensen inequalities,

Week 9

Measure space, Generalized Fatou lemma, Measure and outer measure, Extension of a measure.

Assignments: Presentation of "Projection Operators"

Week 10

Caratheodory extension theorem, Signed measure.

Assignments: Test of "Projection Operators"

Week 11

Hahn decomposition theorem, Jordan decomposition theorem, Mutually signed measure, Radon – Nikodyn theorem.

Assignments: Presentation of "Normal Operators and Unitary Operators"

Week 12

Lebesgue decomposition, Lebesgue - Stieltjes integral.

Assignments: Presentation of "Spectral theorem on finite dimensional space"

Week 13

Product measures, Fubini theorem, Baire sets, Baire measure.

Week 14

Continuous functions with compact support.

Assignments: Test of Section III

Week 15 Revision and Test

Assignments: Test of Section IV

Week 16 Revision and Test

Assignments: Tests of Sections I & II

Week 17 Revision and Test

Assignments: Tests of Sections III & IV